
UNIT –I

DEFLECTIONOF DETERMINATEBEAMS

Objective:

To familiarize with the deflection of simple determinate beams.

Syllabus:

Deflection and slope of a beam subjected to uniform bending moment relation between slope,

deflection and radius of curvature & Differential equation for the elastic line of a loaded

beam. Determination of slope and deflection for cantilever, Simply Supported beam and over

hanging beams subjected to point loads and UDL by Macaulay’s and

Moment area methods. types of springs in series and parallel-deflection of closely coiled

helical springs under axial pull only.

Learning Outcomes:

Student will be able to

 Determine the slope and deflection for determinate beams using Macaulay’s method.

 Determine the slope and deflection for determinate beams using Moment area method.

 Deflection and slope of a beam subjected to uniform bending moment:

A beam AB of length L is subjected to uniform bending moment M.

The initial position of the beam is shown by ACB , where as the deflected position is shown

by AC1 B.

Let R= radius of curvature of the deflected beam

Y= deflection of the beam at the centre



I= Moment of inertia of the beam

= slope of the beam at the end A

= where is in radius

As is slope is

Now AC=CB=

From the geometry of circle,

The deflection y is a small quantity. Hence the square of a small quantity will be negligible.

Bending equation =
is the central deflection of a beam which bends in a circular arc.

Slope:

From triangle AOB, sin = =

is very small, sin=



Relation between slope, deflection and radius of curvature:

Let the curve AB represents the deflection of a beam as shown in fig.

Consider a small portion PQ of this beam. Let the tangents at P and Q make angle and with
x-axis. Normal at P and Q will meet at C such that PC= QC= R. The point C is known as
centre of curvature of the curve PQ.
Let the length of PQ is equal to ds.
From the geometry of fig
R =ds

Differentiate the above equation w.r.t x, we get

M= E.
M = EI

Differentiate the above equation w.r.t ‘s’

If the curvature is very small then is also small and its square is negligible.

Moment M=EI
Shear force F= = EI
Rate of loading -w=

 VariousMethods determining Slope and deflection at a section in a loaded beam
1. Double integration method

2. Moment area method



3. Macaulay’s method

Double integration method:

Maximum deflection δ in a simply supported beam of length L carrying a concentrated load P

at midspan.

EI y′′= Px−P ⟨x−L⟩

EI y′=Px2−P ⟨x−L⟩2+ C1

EI y′=Px3−P ⟨x−L⟩3+ C1x+C2

At x = 0, y = 0, therefore, C2 = 0

At x = L, y = 0

0=PL3−P ⟨L−L⟩3+ C1L

0=PL3-PL3+ C1L

C1=−PL2

Thus,

EI y=Px3− P ⟨x−L⟩3−PL2x

Maximum deflection will occur at x = ½ L (midspan)

=P −P− P( )

= P−0−P

=  

Therefore

Macaulay’s method:

This is a convenient method for determining the slope and deflections of the beam subjected

to point loads.

Maximum deflection δ in a simply supported beam of length L carrying a eccentric

point load P at free end:



The bending moment at any section between A and C at a distance x from A is given by

The bending moment at any section between C and B at a distance x from A is given by

The B.M for all the sections of the beam is expressed in a single equation

we know that

M=EI

EI

integrating the above equation

EI

integrating the above equation

EI

Apply boundary conditions

At x=0, y=0 and

At x=L, y=0

At x=0 and y=0, then

At x=L, y=0, then )

substitute the values of , in the above equation

EI

EI

Slope is maximum at A or B

at A =

At x=0,

EI

The deflection under the load is , substitute x=a, then we get

EI



Maximum deflection :

The slope is zero at the point of maximum deflection,

x=

for put the value of x in deflection equation

EI

Example: Find the deflection of the girder at the points under the loads. and also find the

maximum deflection. Take I=64x 10-4m4 and E= 2.1x105N/mm2.

EI

Integrating on both sides

EI

Again integrating on both sides

EI

At x=0, y=0 then

At x=14, y=0 then

Deflection at C, substitute x=3

EI

= -2.93mm

Deflection at D, substitute x=9.5m

= -3.73mm

Maximum deflection

Let us assume that the deflection will be maximum at section between C and D. The slope

equation at the section is equal to zero at the maximum deflection.

EI

x=6.87m

EI



Moment Area method:

This method is convenient in case of beam act upon with point loads in which case bending

moment area consist of triangles and rectangular. This method is mainly explained by Mohr’s

theorems.

Mohr’s theorem 1:

It states that the change of slope between any two points on an elastic curve is equal to area of

bending moment diagram between these points divided by flexural rigidity (EI).

Mohr’s theorem 2:

It states that the intercept taken on a vertical reference line of tangents at any two points on an

elastic curve is equal to the moment of the bending moment diagram between these points

above the line divided by flexural rigidity.

Deflection and slope of a cantilever by Moment area method:

Cantilever carrying a point load at the free end:

The fig shows a cantilever of length L fixed at end A and free at the end B.It carries a point

load W at B.



At the fixed end A, the slope and deflection are zero.

Then according to moment area method,

And

A= Area of B.M diagram between A and B =
= Distance of C.G of area of B.M diagram from B=

Cantilever carrying a uniformly distributed load:

The fig shows a cantilever of length L fixed at end A and free at the end B. It carries a

uniformly distributed load of w/unit length over the entire length.

Determine the end slope and deflection of the simply supported beam carrying a point



load at the centre:

Slope at A

But area of B.M diagram between A and C = Area of triangle ACD

=

=

Determine the end slope and deflection of the simply supported beam carrying a

uniformly distributed load at the centre:

But area of B.M diagram between A and C = Area of parabola ACD

=

=

Example: Find the slope and deflection of cantilever beam at the free end using moment area



method.

to find the area of the B.M diagram, divide the fig into two triangles and one rectangle.

area A1=

area A2==

area A3=

Total area of B.M diagram,

A= A1+ A2+ A3=

=0.005 radians

++ =

= 7x1013Nmm3

Close-Coiled Helical Spring

Axial Load:

a) Neglecting curvature and direct shear effects:

Consider a Closely coiled helical spring as shown in fig. under the action of axial load.

Let,

W = Axial Load

C



D = Mean coil diameter

d = Dia. of Spring wire

 = Axial deflection

G = Modulus of rigidity

Ѳ = Angular Deflection

n = No. of active coils

= Maximum shearing stress induced

The following assumptions are made:

i. An element of an axially loaded helical spring behaves essentially as a straight

bar in pure torsion.

ii. The planes perpendicular to the bar axis do not wrap or distort during

deformation. As a result of this the shearing stress will have a linear

distribution along the radius.

Fig. Shows the circular sectional element of the spring wire under torsion. Torque

on the spring acting about the axis of the spring.

At any radius x from the center ‘O’ of the wire, the shearing stress is,

The torque dT taken up by a ring of width dr at a radius r will be,

Total torque T =

------ (1)

Calculate rotation and deflection of the spring, consider the elementary angle dѲ

through which one cross section rotates w.r.t other.

Ѳ =

Ѳ = ------ (2)

From eq (1) & (2)

Now, =



& Ѳ =

Now, deflection  =

Ѳ =

Stiffness, K = =

Direct Shear Stress,

Therefore, Maximum resultant shear stress = +

Springs in Series: when two springs of different stiffness are joined end to end to carry a

common load w, they are said to be connected in series, as shown in fig

Total deflection,

Where K is the combined stiffness

Springs in parallel: when two springs are joined in such a way that they have a common

deflection, they are said to be connected in parallel two different.



W=W1+W2

UNIT-1

Assignment-Cum-Tutorial Questions

A. Questions testing the remembering / understanding level of students

I) Objective Questions

1. Slope at a point in a beam is the

(a) Verticaldisplacement (b) Angular displacement (c) Horizontal displacement (d) None

2. Deflection at a point in a beam is the

(a) Verticaldisplacement (b) Angular displacement (c) Horizontal displacement (d) None

3. Maximum deflection in a S.S. beam with W at centre will be

(a) WL3/36EI (b) WL3/24EI (c) WL3/48EI (d) WL3/96EI

4. Maximum slope in a S.S. beam with W at center will be

(a) At the supports (b) At the center

(c) In between the support and the center (d) None

5. Maximum deflection in a cantilever beam with UDL ‘w’ over the entire span will be

(a) At the left hand support (b) At the Right support (c) At the center (d) None

6. Deflection under the load in a S.S.beam with ‘W’ not at the center will be

(a) 4Wa2b2/3EIL (b) 2Wa2b2/3EIL (c) Wa2b2/3EIL (d) None

7. Distance of maximum deflection from the center in a S.S.Beam with ‘W’ not at the

center will be



(a) [2 (L2—b2)/3]0.5 (b) [(L2—b2)/3]0.5

(c) [(3L2—b2)/3]0.5 (d) [4(L2—b2)/3]0.5

8. Difference in slopes between two points A and B by the moment area method is given

by

(a) Area of BMD between A and B/2EI (b) Area of BMD between A and B/3EI

(c) Area of BMD between A and B/EI (d) Area of BMD between A and B/4EI

9. Difference in deflections between two points A and B by the moment area method is

given by

(a) (Area of BMD between A and B). /2EI

(b) (Area of BMD between A and B). /3EI

(c) (Area of BMD between A and B). /EI

(d) None



10. Macaulay’s method is more convenient for beams carrying

(a) Multi concentrated loads (b) Multi number of UDL

(c) Multi-concentrated and multi UDL loads (d) None

11. The ratio of maximum deflections of a cantilever beam of span L with (i) a load W at

free end (ii) a U.D.L over entire length of total W is given by

(a) 3/8 (b) 8/3 (c) 5/8 (d) 8/5

12. If the depth of a cantilever is doubled and width is halved, the deflection of a

cantilever due to a point load at free end changes in the ratio.

(a) 1/2 (b)1/4 (c) 1/8 (d) 1/16

II) Problems:

1. A beam of length 4.8 m and of uniform rectangular section is simply supported at its

ends. It carries a uniformly distributed load of 10 kN/m run over the entire length.

Calculate the width and depth of the beam if permissible bending stress is 7 N/mm2

and maximum deflection is not to exceed 0.95 cm. Take E for beam material = 1.05 x

104 N/mm2.

2. A simply supported beam of 4 m span carries a UDL of 20 kN/m on the whole span

and in addition carries a point load of 40 kN at the centre of span. Calculate the slope

at the ends and the maximum deflection of the beam. Take E = 200 GN/m2 and I =

5000 cm4.

3. A cantilever 3 m long is of rectangular section 120 mm wide and 240 mm deep it

carries a UDL of 2.5 kN per meter length for a length of 1.5 m from the fixed end and

a point load of 1 kN at the free end. Find the deflection at the free end. Take E = 10

GN/ m2.

4. A cantilever 3m long carries two point loads, 60 kN each, at distance of 0.75 m and

1.75 m respectively from the fixed end. Determine the deflection at the free end. Take

E= 200GN/m2 and I = 12689400 cm4.

5. A steel girder of uniform section, 14 meters long, is simply supported at its ends. It

carries concentrated loads of 120 kN and 80 kN at two points 3 meters and 4.5meters

from the two ends respectively. (a) Calculate the deflection of the girder at the two



points under the two loads.(b) The maximum deflection. Use Macaulay’s Method.

Take: I = 16 × 104 m4, and E = 210 × 106 KN/m2.

6. A simply supported beam of span 10m is loaded with a UDL of 5000 N/m over a

length of 3 m from the left end. Find the maximum deflection of the beam. Take E =

0.2 MN/mm2 and I= 3000 cm4.

7. The cantilever beam shown in Fig. has a rectangular cross-section 50 mm wide by h

mm high. Find the height h if the maximum deflection is not to exceed 10 mm. Use E

= 10 GPa.

8. A girder rests on two supports 5m apart, and carries a load of 60 kN, 2 m from one

support. Find the ratio of maximum deflection to deflection under the load.

9. A simply supported beam is 6 m long and has flexural rigidity of 3 MNm2. It a carries

a point load of 400 N at the middle and a UDL of 200 N/m along its entire length.

Calculate slope at the ends and deflection at the middle. Prove that the relation

10. An overhanging beam ABC is loaded as shown in fig. Find the slopes over each

support and at the right end. Find also the maximum deflection between the supports

and the deflection at the right end. Take E= 2 x105 N/mm2 and I= 5 x 108 mm4

11. A simply supported beam, having rectangular cross-section, carries a concentrate load

at the centre of span. If the maximum flexural stress is 9 N/mm2, find the depth of

section to the span ratio in order the central deflection may not exceed 1/480 of span.

12. A close helical spring 10cm mean diameter is made of 20 turns of 1 cm dia steel rod.

The spring carries an axial load of 100N.find the shearing stress developed in the

spring and the deflection of the load .assume modulus of rigidity 84Gpa.

13. A close-coiled helical spring is having a stiffness of 1kN/m of compression under a



maximum load of 4.5 N and a maximum shearing stress of 45 Mpa. The solid length

of the spring (i.e. when the coils are touching) is to be 4.5 cm. Find the diameter of the

wire and the mean diameter of the coils required. Consider G as 42 Gpa

14. a) A close-coiled helical spring made of 12 mm round steel has 12 coils and the mean

diameter of the coils is 16 cm. The spring is subjected to an axial load of 150 N.

Determine the elongation, intensity of tensional stress and strain energy per cubic

metre under the loaded condition. G=84 Gpa.

b) If the axial load is removed and an axial torque of 10 N-m is applied, determine the

axial twist, intensity of bending stress, and work stored per cubic meter in the

spring. E=210 GPa.



UNIT-II

COLUMNS AND STRUTS

Objective:

To get familiarize with different types of columns

To Analyze the crippling loads for columns for different support end conditions

To Analyze the struts for UDL and point loads.

Syllabus:

Introduction – Types of columns - Short, medium and long columns-Axially loaded compression

members-crushing load- Euler’s theorem for long columns-assumptions-derivation of Euler’s

critical load formula-various end conditions-equivalent length of column-slenderness

ratio-Euler’s critical stress-limitations of Euler’s theory.

Learning outcome:

Student will be able to

Gain knowledge on different types of columns

Analyze and to determine the Crippling loads by using Euler’s formula and Rankine’s formula

Determine the Bending moments and stresses due to lateral loading on struts.

COLUMN:

Column is a vertical structural member, which is subjected to axial compressive load. It transmits

the load from roof slab and beam, including its self weight to the foundation.

STRUT:

A structural member which carries an axial compressive load in roof truss is called as strut. It

may be horizontal, inclined or even vertical



TYPES OF COLUMNS:

Short columns:

Columns which failed due to crushing and its slenderness ratio is less than 12 called short

columns. Generally short columns are failed due to crushing loads.

Long columns:

Columns which failed due to buckling and having slenderness ratio greater than 12 are called

Long columns.

Euler’s Theory

Assumptions in Euler’s Theory

1. Initially the column is perfectly straight and the load is applied axially

2. The cross section of column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic and thus obeys

Hooke’s law.

4. The length of the column is very large as compared to the cross-section dimensions

5. Direct stress is neglected.

6. The failure of column occurs due to buckling alone.

End conditions of column

1. Both ends hinged

2. Both ends fixed

3. One end is fixed and other hinged

4. One end is fixed and other free

Note: for fixed end, the slope and deflection is zero and for hinged end, the deflection is zero

Derivation of Crippling loads for different end conditions:

 Column hinged at both ends

Consider a column carrying an axial compressive load P and having both ends hinged as

shown in fig.



Taking origin at A, the bending moment at a distance x is

we know that

Let

General solution is

, where A and B are constants

End conditions are a) b)

At => A=0

At =>

Now B = 0 or

if B = 0 the y = 0 and the column will remain straight, which is not ture

Therefore

; n= 0, 1, 2, 3……

Taking fundamental value i.e., n=1

This load is known as the critical load and is denoted by Pcr and is also called as Euler’s load

 Columns with one end is fixed and other free



Consider a column AB of length l fixed at A and free at B carrying a load P at B. as a

result of loading the column deflect into a curved form such that the free end B deflects through

‘a’ and occupies a new position B1.

Now consider any section at a distance x from A

Let y= deflection at the column at section

Moment Mx= P(a-y)

Let

General solution is

, where A and B are constants

End conditions are a) b) c)

At => A= -a

At => Bk = 0

Either B = 0 or k = 0

Since the load is not equal to zero. Therefore B = 0

At =>

 Columns with both ends fixed

Consider a column AB of length l fixed at both of its ends and carrying a critical load at B.



Now consider any section at a distance x from A

Let y= deflection at the column at section

Since both ends of the column are fixed and it is carrying a load, therefore there will be same

fixed end moments at A & B.

Let Mo=FEM at A& B

Let

General solution is

, where A and B are constants

End conditions are a) b) c)

At => A = -

At => Bk = 0

B=0

At =>



S.NO
END

CONDITIONS

RELATIONBETWEEN

EFFECTIVE AND

ACTUAL LENGTHS

CRIPPLING LOAD

PE= (π 2EI) / Le
2

 Column with one end is fixed and other end is hinged

Let

General solution is

, where A and B are constants

End conditions are a) b) c)

At => A =

At => Bk - = 0

B=

At =>



1 Both sides hinged Le=L PE= (π 2E I) / L2

2
One fixed and other

free
Le=2L PE= (π 2EI) / 4L2

3 both fixed Le=L/2 PE= 4(π 2EI) / L2

4
One fixed and other

hinged
Le=L/√2 PE= 2(π 2EI) / Le

2

 Slenderness ratio:

Euler’s formula for the crippling load
PE =

We know that the buckling of a column under the crippling load will take place about the
axis of least moment of resistance. Subjected to I= A

A is the area, K is the least radius of gyration
PE =

Where is known as slenderness ratio.
Slenderness ratio is defined as ratio of equivalent length of column to the least radius of
gyration of the section.

 Euler’s critical stress:
Euler’s formulae for the crippling load
PE =
Euler’s critical stress



 Limitations of Euler’s formula:
Euler’s critical stress

For a column both ends hinged, Le = l

Crippling stress become as Euler’s critical stress , where is slenderness ratio.

If the slenderness ratio is small the crippling stress will be high. But for column material

the crippling stress can’t be greater than the crushing stress. Hence, when the slenderness

ratio is less than a certain limit, Euler’s formula gives a value of crippling stress greater

than the crushing stress. In the limiting case we can find the value of l/k for which

crippling stress is equal to crushing stress.

For example: A mild steel column with both ends hinged

Crushing stress =330N/mm2

E=2.1x105N/mm2

Equating the crippling stress to the crushing stress =330

Hence, if the slenderness ratio is less than 80 for mild steel column with both ends hinged,

then Euler’s formula will not be valid.

 Rankine’s formula:

The empirical formula given by Rankine is given by

`

Where P= crippling load by Rankine’s formula

=crushing load =

= crushing load =

Where I=A

Crippling load

 Long columns subjected to eccentric loading:

When a column is subjected to an eccentric load the maximum intensity of compressive

stress is given by



= =

=

P =

When the effect of buckling is also included, then

P=

 Column subjected to eccentric loading with both ends are hinged:

Consider a column hinged at both ends and subjected to an eccentric load P as shown in fig.

At a distance x from A,

General solution is y=A coskx +B sinkx

x=0, y=e then A=e

x=l, y=e then e= e coskl + B sinkl.

Y=

At x=, deflection is maximum

Now

Resultant stress becomes

=

= distance of the outermost fiber in compression from the N.A



For other end conditions,

 Column subjected to eccentric loading one end fixed other end free:

When a column is subjected to an eccentric load P at eccentricity e. let us assume that top of

the column is free and the bottom of the column is fixed.

General solution is y=A coskx + B sinkx+

At B, x=0, y=0 then A=-

X=0,,

Bk= 0

B=0

At A, x=l, y=

The max bending moment for the column at B and is equal to P

M= P.e.seck l=Pesecl

For maximum compressive stress

=

If both ends are hinged, then





 Strut pinned at both ends and subjected to an axial thrust P and a transverse point load

W at the center:

Consider any section at a distance x from A

General solution is y=A coskx +B sinkx -

x=0, y=0 then A=0

X=, then

Y= -

Maximum deflection:

At x= , y=

Maximum bending moment:

Substitute maximum deflection in above equation, then

Tan=

When is small

Tan=

Maximum stress:

Stress due to bending, =



=

 Strut subjected to an compressive axial thrust P and a transverse u.d.l w per unit length

of both ends are pinned:

Consider any section at a distance x from A

Differentiate the above equation is w.r.t x,

Again differentiate the above equation is w.r.t x

Solution for the above equation is

M =A coskx +B sinkx+

x=0, y=0 then A==

X=,

B=

M= coskx sinkx+

Maximum bending moment:
At X=
= coskx sinkx+

Maximum deflection:
at X=, y=, M=



Maximum stress:



UNIT – III

INDETERMINACY - PROPPED CANTILEVERS

Objective:

To learn the concept of Static and kinematic indeterminacy and analyse the propped

cantilevers.

Syllabus:

Degree of static and kinematic indeterminacy- analysis of propped cantilevers for

concentrated loads and UDL-shear force and bending moment diagrams

Learning Outcomes:

After completion of this unit the student will be able to

1. Distinguish between static and kinematic indeterminacy.

2. Evaluate prop reaction, shear force and bending moment for propped cantilever beam

3. Draw the shear force and bending moment diagrams for different conditions for
propped cantilever and fixed beams

Learning Material

Introduction:

Structure is an assemblage of a number of components like slabs, beams, columns,

walls, foundations and so on, which remains in equilibrium.

When any elastic body is subjected to a system of loads and deformation takes place

and resistance is setup against the deformation, then the elastic body is known as Structures. If

no resistance is setup in the body against deformation, it is known as an unstable structure or

mechanism.



Classification of structures:

a) Based on type of joints:

 Pin jointed frames: Members are connected by means of pin joints. These frames

support the loads by developing only axial forces.

 Rigid Jointed frames: These frames resist external forces by developing bending

moments, shear forces, axial forces and twisting moments in the members of the

frame.

b) Based on Dimensions:

 Plane frames: All members of the plane frame as well as external loads are assumed

to be in one plane.

 Space frames: All members do not lie in one plane. Very often, it is also a

combination of series of frames.

c) Based on static equilibrium conditions:

 Determinate Structures:

Determinate structures are analyzed just by the use of basic equilibrium equations. By

this analysis, the unknown reactions are found for the further determination of stresses.

Examples of determinate structures are:  cantilever beams, three hinged arches etc.

 Indeterminate Structures:

Redundant or indeterminate structures are not capable of being analyzed by means of

use of basic equilibrium equations. Along with the basic equilibrium equations, some extra

conditions are required to be used like compatibility conditions of deformations etc to get the

unknown reactions for drawing bending moment and shear force diagrams.

Examples of indeterminate structures are: Propped cantilever, fixed beams, continuous beams,

fixed arches, two hinged arches, portals, multi-storeyed frames, etc.

Special methods like strain energy method, slope deflection method, moment distribution

method, column analogy method, virtual work method, matrix methods, etc are used for the

analysis of redundant structures.





Support Type Image Reactions r D.O.F

Roller r=1 2

Pin r=2 1

Fixed r=3 0

Static Indeterminacy

The number of equations required over and above the equations of static equilibrium to find

the unknown reactions is known as degree of static indeterminacy or degree of redundancy of

the structure.

DS = Dse+ Dsi

Dse = External indeterminacy

= r-6 (for space fame)

= r-3 (for plane fame)

Here r indicates number of reactions

Dsi = Internal Indeterminacy

= m-(2j-3), for pin jointed plane frame

= m-(3j-6), for pin jointed space frame

= 3C , for rigid jointed plane frame

= 6C , for rigid jointed space frame

Here j indicates number of joints.

C indicates number of closed loops.

Kinematic Indeterminacy

It is defined as the number of independent components of joint displacements with respect to

a specified set of axes. It is also called as degrees of freedom.

For beams the reactions and degree of freedom at an ends are as follows,



For pin jointed frames

Dk = 2j – r (for plane frames)

Dk = 3j – r (for space frames)

Dk – Degree of kinematic indeterminacy

j- Number of joints

r- Number of reactions

For rigid jointed frames

Dk = 3j – r (for plane frames considering axial strains)

Dk = 3j – (m+r), (for plane frames neglecting axial strains)

Dk = 6j – r (for space frames considering axial strains)

Dk = 6j –(m+ r) (for space frames neglecting axial strains)

Dk – Degree of kinematic indeterminacy

j- Number of joints

r- number of reactions

m- number of members.

Propped Cantilever

A cantilever supported at any point in the beam is called as a Propped Cantilever.

When a cantilever is supported at any point in the span, the structure becomes indeterminate.

Under vertical load, there will be two unknown reactions at the fixed end and one at supported

end. Two equations of statics i.e. ∑V = 0 and ∑M = 0 are available. This type of structure

cannot be analysed by the equations of the statics. One more equation besides two equations

of statics is required to solve three unknowns. Therefore, this structure is said to be

indeterminate to first degree. The third equation can be obtained by considering the

deflections or slopes.

Statically indeterminate structures can be analysed by using method of consistent deformation

and moment area method.



Method of consistent deformation

Step-1

1. In the first step the support at C is removed and the deflection at C is calculated. Let it

be ∆c1.

2. The loading is removed and force Rc equal to unknown reaction at C, is applied at C

and the deflection at C is worked out. Let the deflection be ∆c2.Then

∆c1+∆c2 = 0 in case the support C remain at the same level when the beam is

loaded.

∆c1+∆c2 = ∆ in case the support C sinks by ∆.

3. By using the above two equations the unknown reaction Rc can be obtained and the

structure can be analyzed.



Step-2

1. The structure is made determinate by removing fixity at A and thus the structure will

be a simply supported beam with overhang.

2. Under external loading the slope at A is worked out. Let the slope be ɵ1.

3. The load is removed and a moment MA equal to fixed end moment is applied at A. Let

this slope be ɵ2.Then

ɵ1+ ɵ2= 0,in case there is no rotation of supports.

ɵ1+ ɵ2= ɵ, in case the support rotates by ɵ.

4. By using the above equation the value of unknown moment MA can be calculated.

Moment AreaMethod

Step-1 (TakingRc as indeterminate reaction)

1. The bending moment diagrams due to external loading and Rc are drawn considering

ABC as a cantilever.



2. As the fixed end A is fixed, the tangent to the deflection curve at A will pass through

C in case A and C are at the same level. Thus the moment of M/EI diagram between A

and C about C will be zero. If there is change of level equal to ∆ between A and C the

moment of M/EI diagram between A and C will be -∆.



Step-2 (TakingMA as indeterminate moment)

1. The bending moment diagrams are drawn for the load and fixed end moment MA

considering ABC as simply supported beam with overhang.

2. In case A and C are the same level, the moment of M/EI diagram between A and C

about C will be zero.

3. If there is change of level ∆ between the supports A and C after loading, the moment

of M/EI diagrams between A and C about C will be -∆.

Problems

1. Draw B.M diagram for the propped cantilever subjected to point load, as shown in the

figure. The support A & B remain at the same level after loading.

Sol: The support at B is removed and the B.M diagram for the cantilever is drawn as

shown in fig C

The deflection ∆B1 at B will be equal to the moment of M/EI diagram about B.

Unknown

reaction RB is applied at B

and Bending Moment diagram

is drawn

Upward direction at B

By solving



Maximum +VeB.M will be at the centre and is equal to 5WL/32.

2. Determine the reaction components for the propped cantilever subjected to UDL as shown

in figure.

Sol: To analyse this propped cantilever method of consistent deformation is used and the

deflection criteria is considered.

Remove the support at B as shown in the figure.

Step 1: Let be the deflection at point B due to external loading.

According to Moment area theorem 2

= Moment of area of M/EI diagram between A& B about B.

= Wl4/8EI

Step 2: Remove the external loading and introduce unknown reaction .

RB = Propped reaction at point B as shown in fig C.

Let be the deflection at point B due to RB.

Then according to moment area theorem

= RBl3/3EI

Since the supports are at the same level even after loading =



RB= 3WL/8.



UNIT-IV

FIXED BEAMS

Objective:

To get familiarize with different types of fixed beams

To Analyze the loads for different beams

Syllabus:

Analysis of fixed beams for concentrated loads and UDL- SFD and BMD with and without

sinking of supports.

Learning outcome:

Student will be able to

Analyze the fixed beams with and without sinking of supports.

Fixed Beams

Introduction

A fixed or a build in beam has both of its ends rigidly fixed so that the slope at the ends

remains zero. Such a beam is also called as the encaste beam. The fixed ends give rise to

fixing moments there in addition to the reactions. If perfect end fixing can be achieved, build

in beams carry smaller maximum bending moments and have smaller deflections that the

corresponding simply supported beams with the same loads applied. Therefore they are

stronger and stiffer. However the need for high accuracy in aligning the supports and fixing

the ends during erection increases the cost. Small subsidence of either support or temperature

changes can set up large stresses. The end fixings are also normally sensitive to vibrations and

fluctuations in bending moments.

There are four unknown reaction components. Two at end A i.e., RA &MA and two at end B

i.e RB &MB. But the available equilibrium equations are two only i.e., ∑V = 0 and ∑M = 0.

Fixed beam is a statically indeterminate structure and its degree of indeterminacy is 2.

So we need two more equations to analyse the fixed beam.



Fig (a) shows fixed beam AB of uniform section and span l loaded as shown in the figure. As

the ends of the beam are fixed, the slope at support will be shown in fig (b). Let MA andMB be

the fixed end moments at supports A & B respectively. The angle between the tangents drawn

on the deflected curve is equal to zero. The area of M/EI diagram between A & B is Zero.

The fixed beam can be taken as simply supported beam with end moments MA &MB such that

the slopes at the supports are zero. Due to simply supported condition the loading will cause

+ve B.M. the B.M will vary from MA at A to MB B. So the area of M/EI diagram due to fixed

end moments is equal to area of M/EI diagram due to simply supported beam.

Let As be the area of B.M considering beam as simply supported and Ai be the area of the

B.M due to fixed end moments.

Ai= As

…………………..(1)

The intercept made by the tangents drawn at A & B will be zero. Therefore moment of

area of M/EI diagram between A & B about B will be zero. Similarly, moment of area of

M/EI diagram between A & B about B will be zero.

Ax/EI = 0

Here x is the distance of the C.G of B.M diagram area from the support.



Xs = distance of C.G of As from end A

Xi = distance of C.G of Ai from end A.

By substituting the values we finally get

………………………(2)

From equations 1& 2 the values of and MB can be found out.

Calculation of fixed end moments for a fixed beam of uniform section.

Case 1: Concentrated load at the centre of span.

A fixed beam can be treated as a simply supported beam with end moments MA &MB. So that

the slope at the supports is zero.

Simply supported bending moment diagram is a triangle and bending moment diagram due to

fixed end moments is a rectangle.

Since the beam is symmetrical MA=MB

Wehave As+Ai = 0

(

MA= MB = WL/8



To find the point of contra flexure equate Mx to Zero.

Point of contra flexure occurs at L/4 from either end.

Maximum +ve B.M occurs at the centre & is equal to WL/8

Maximum –Ve B.M occurs at the supports & is equal to -WL/8.

Case :2

UDL throughout the span.

A fixed beam can be treated as a simply supported beam with end moments MA &MB. So that

the slope at the supports is zero.

Simply supported bending moment diagram is a triangle and bending moment diagram due to

fixed end moments is a rectangle.



Since the beam is symmetrical MA=MB

Wehave As+Ai = 0

MB= Wl2/12 = MA.

Point of contraflexure occurs at a distance of 0.212L from either ends.

Maximum +VeB.M occurs at the centre & is equal to Wl2/ 24

Maximum -VeB.M occurs at the supports & is equal to Wl2/ 12.

Case 3:

Unsymmetrical Concentrated Load.

A fixed beam can be treated as a simply supported beam with end moments MA &MB. So that

the slope at the supports is zero.

Simply supported bending moment diagram is a triangle and bending moment diagram due to

fixed end moments is a rectangle.

RA= Wb/l & RB= Wa/l

Maximum B.M for simply supported beam = Wab/l

Wehave a relation

…………………(1)



…………………(2)

From relation (1)

…………………(3)

From relation (2)

…………………(4)

Solving equations 3 & 4

MB = Wa2b/l2

MA = Wab2/l2

Point of contra flexure occurs at a distance of ab/l from either ends.



UNIT – V

CONTINOUS BEAMS – THEOREMOF THREEMOMENTS

A continuous beam is a statically indeterminate multispan beam on hinged support. The end spans
may be cantilever, may be freely supported or fixed supported. At least one of the supports of a
continuous beam must be able to develop a reaction along the beam axis

Objectives:

Derive the Clapeyron’s theorem of three moments Analyze continuous beam with different moment of

in- ertia with unyielding supports Analyze the continuous beam with different moment of inertia in

different spans along with support settlements using three moment equation.

11.1 INTRODUCTION

A beam is generally supported on a hinge at one end and a roller bearing at the other end. The

reactions are determined by using static equilibrium equations. Such as beam is a statically

determinate structure. If the ends of the beam are restrained/clamped/encastre/fixed then the

moments are included at the ends by these restraints and these moments make the structural element

to be a statically indeterminate structure or a redundant structure. These restraints make the slopes at

the ends zero and hence in a fixed beam, the deflection and slopes are zero at the supports.

A continuous beam is one having more than one span and it is carried by several supports (minimum

of three supports). Continuous beams are widely used in bridge construction. Consider a three bay of

a building which carries the loads W1, W2 and W3 in two ways.

FIG. 11a Simply supported beam

FIG. 11b Bending moment diagrams



A B C D

FIG. 11c Continuous beam

FIG. 11d Bending moment diagram

If the load is carried by the first case then the reactions of individual beams can be obtained by

equilibrium equations alone. The beam deflects in the respective span and does not depend on the

influence of adjacent spans.

In the second case, the equilibrium equations alone would not be sufficient to determine the end

moments. The slope at an interior support B must be same on either side of the support. The

magnitude of the slope can be influenced by not only the load on the spans either side of it but the

entire loads on the span of the continuous beam. The redundants could be the reactions or the

bending moments over the support. Clapeyron (1857) obtained the compatibility equation in term of

the end slopes of the adjacent spans. This equation is called theorem of three moments which

contain three of the unknowns. It gives the relationship between the loading and the moments over

three adjacent supports at the same level.

11.2 DERIVATIONOF CLAPEYRON’S THEOREM
(THEOREM OF THREE MOMENTS)

Figure 11e shows two adjacent spans AB and BC of a continuous beam with two spans. The

settlement of the supports are A, B and C and the deflected shape of the beam is shown in AjBjC j

(Fig. 11f).

A B C

FIG. 11e





GD CF
DBj = BjF

The primary structure is consisting of simply supported beams with imaginery hinges over each

support (Fig 11g). Fig 11h shows the simply beam bending moment diagrams and Fig 11i shows the

support moment diagram for the supports.

A compatibility equation is derived based on the fact that the end slopes of adjacent spans are

equal in magnitude but opposite in sign. Using Fig 11f and the property similar triangles
B −A + B C −B + B

A = C



l1
B B

l2
A −B C −B



i.e. A + C = + (i)



l1 l2 l1 l2

The displacements are obtained as follows.

(ii)



B 1 1 l1 1
A = E1I1 A1x¯1 + 2 MAl1 · 3 + 2 MBl2 ·2l2/3

B =

.
1 A2x¯2
+

1 MCl2
·

l2 + Σ
1 MBl2 · 2l2/3



C E2I2 2 3 2



Combining the equations (i) and (ii)



M l . l l Σ l . A x¯ A x¯ Σ



A 1 + 2MB 1 + 2
+
MC

2 + 6
1 1 + 2 2



E1I1 E1I1 E2I2 E2I2 E1I1l1 E2I2l1




.

= 6 A

−B
l1

+

Σ
C −B

l2
(iii)



The above equation is called as Clapeyron’s equation of three moments.

In a simplified form of an uniform beam section (EI = constant); when there are no settlement of

supports
. A x¯ A x¯ Σ



MAl1 + 2MB(l1 + l2) + MCl2 =
−6

1 1+ 2 2l1 l2
(iv)



It is to be mentioned here that x¯1 and x¯2 are measured outwards in each span from the loads to the
ends.

11.2.1 Procedure for Analysing the Continuous Beams using Theorem of

Three Moments

(1) Draw simple beam moment diagram for each span of the beam. Compute the area of the above

diagrams viz, A1, A2 ... An and locate the centroid of such diagrams x¯1, x¯2 ... x¯n. It must

be re- membered that the distances x¯1, x¯2 ... x¯n are the centroidal distances measured
towards the ends of each span as shown in Fig. 11j.



FIG. 11j Simple beam moment diagrams

(2) Identify the support moments which are to be determined viz, MA, MB and MC

(3) Apply three moment equation for each pair of spans which results in an equation or equations

which are to be solved simultaneously. If the beam is of uniform section (EI = constant) and

no support settlements apply equation (iv) and in case the beam is non-uniform and the support

settles/raises apply equation (iii).

(4) The solution of the equations gives the values of the support moments and the bending moment

diagram can be drawn.

(5) The reactions at the supports and the shear force diagram can be obtained by using equilibrium

equations.

11.3 APPLICATION OF THREE MOMENT EQUATION IN CASE OF
BEAMS WHEN ONE OR BOTH OF THE ENDS ARE FIXED

11.3.1 Propped Cantilever Beam

Consider the propped cantilever beam of span AB, which is fixed at A and supported on a prop at B. It

is subjected to uniformly distributed load over the entire span. The fixed end moment at the support A

can be determined by using theorem of three moments.

A zero span A B

FIG. 11k Propped cantilever beam

As the A is fixed support, extend the beam form A to Aj of span ‘zero length’ and Aj is simply
supported.

(1) The simple beam moment diagram is a parabola with a central ordinate of (wl2/8). The

centroid of this bending moment diagram (symmetrical parabola) is at a distance ‘l/2’ from the

supports A and B.

A B

FIG. 11l Simple beam moment diagram



It’s area is A
=

. 2 Σ

3 (l
)

. wl2Σ
8

=

wl3 .
12



(2) The support moment diagram is drawn as

M
A

l

FIG. 11m Pure moment diagram



(3) Apply three moment theorem for the span AB.

Mj (0)+ 2MA(0 + l) + 0 =
−6

. wl3Σ. l Σ



A 12 2

∴

(4) The support reactions are computed by drawing the free body diagram as

wl2/8 w/m

A B
l

V
A B

FIG. 11n Free body diagram

V = 0; VA + VB = wl

V



MA = 0;
−wl2

8

+

wl2

2 − VBl = 0



(

and hence
(5) Using the reactions, the shear force diagram and bending moment diagrams are obtained as

(5wl
8 B

A 3wl
8

FIG. 11o Shear force diagram



The point of contraflexure is determined by equating the bending moment expression to zero and

hence



5wl x
−
8

wx2

2 −
wl2

8 = 0



Solving the above equation we get x = l
and

l2 + 4x2 − 5lx = 0



The location of maximum positive bending moment from support A is obtained by equating the

shear force to zero.
5wl
8 − wx = 0

At this location, the maximum positive bending moment is obtained from



−wl2 . 5wl Σ. 5l Σ w(5l/8)2



Max + ve BM = 8 + 8 8 − 2



MC = −
wl2

8 +
25wl2

64 −

25wl2

128 =

9wl2 2

128 = 0.07wl



8

0.07 wl2

A B

( wl2)
FIG. 11p Bending moment diagram

11.3.2 Beams with Both the Ends Fixed

Consider a beam AB of span l is fixed at both the ends. The beam is carrying a concentrated load of W
at a distance of ‘l/3’ from the fixed end A.

As the end A is a fixed support, extend this A to Aj of span (lj) of zero length and is also simply

supported at Aj. Likewise the end B is extended to Bj.
The simply supported bending moment diagram is drawn with the maximum ordinate as

W ×(l/3) ×(2l/3)
l = 2Wl/9.

The centroid of the unsymmetrical triangle is shown in Fig. 11.3j.



l  O

l/3
W

2l/3

l l  O



A A B B1

FIG. 11q Fixed beam

FIG. 11r Simple beam moment diagram



(la

3

lb

3(



FIG. 11s Centroid of an unsymmetrical triangle



The centroid of the simply supported BMD is obtained using the above as

. 4l

Σ 9 from A and

. 5l

Σ 9



from B.

The area of the bending moment diagram
is

. 1 Σ

2 (l
)

. 2Wl Σ

9

=

Wl2
. 9



The support moment diagram can be drawn by identifying the support moments as MA and MB.

Thus

A M
B

l

FIG. 11t Pure moment diagram

Applying three moment theorem for a pair of spans of AjAB (Ref Eq (iv))

.Wl2 Σ. 5l Σ

M



A
Mj (0) + 2MA (0 + l) + MB (l)= 0 − 6

9
9 × 1/l



2MA + MB = −0.37 Wl





Considering the next pair of spans ABBj

MAl + 2MB(l + 0) + Mj (0) =
−6

.Wl2 Σ. 4l Σ



B 9 9

MA + 2MB = −0.296 Wl

Thus the support moments are obtained by solving the above equations

Free body diagram to determine the reactions



0.148 Wl

V
A

Using the static equilibrium;

l/3
W

2l/3

C

FIG. 11u

0.074 Wl

V
B



V = O; VA + VB = W

MA = O; − 0.148 Wl +

W

. l Σ

3
− VBl + 0.074 Wl = O



0.74 W

0.26 W

FIG. 11v Shearforce diagram

0.0986 Wl



 0.148 Wl

FIG. 11w Bending moment diagram

 0.074 Wl



11.4 NUMERICAL EXAMPLES ON CONTINUOUS BEAMS

EXAMPLE 11.1: A continuous beam ABC is simply supported at A and C and continuous over support

B with AB = 4m and BC = 5m. A uniformly distributed load of 10 kN/m is acting over the beam.

The moment of inertia is I throughout the span. Analyse the continuous beam and draw SFD and

BMD.

A C

FIG. 11.1a

20 31.25 kNm



A
 x1

FIG. 11.1b Simple beam moment diagram

C
 x2



FIG. 11.1c Pure moment diagram

Properties of the simple beam BMD

A1 = 2 × 4 × 20 = 53.33 kNm2 A2 = 2 × 5 × 31.25 = 104.17 kNm2



3

x¯1 = 2m

l1 = 4m

Applying three moment equation for the span
ABC

3

x¯2 =
2.5m

l2 =
5.0m

. A x¯

A x¯ Σ



MAl1 + 2MB(l1 + l2) +
MCl2

=

−6

1 1+ 2 2l1 l2



2MB(4 + 5)= −6
. 53.33 × 2

4

+

104.17 × 2.5 Σ

5



18MB = −6(26.67 + 52.1)

MB = −26.26 kNm.



EXAMPLE 11.2: Analyse the continuous beam by three moment theorem. Draw SFD and BMD.

10 kN 10 kN



2 4 m

D 6 m
A

3 3 m

E 6 m
B C



FIG. 11.2a

SOLUTION

The simple beam moment diagram is drawn as

MD = Wab/l = 10 × 2 × 4 = 13.33 kNm
6

ME = Wl/4 = 10 × 6 = 15 kNm
4

A D B E C

FIG. 11.2b Simple beam moment diagram

A B C

FIG. 11.2c Pure moment diagram

Properties of the simple beam BMD

A 1 1



1 = 2 (6)13.33 =40.0x¯1 = 6 + 2 = 2.67 m
3

l1 = 6m

A2 = 2 × 6 × 15 = 45
x¯2 = 3m

l2 = 6m



A B C

FIG. 11.4b Simple beam moment diagram

A C

FIG. 11.4c Pure moment diagram

Properties of the simple beam BMD

A1 = 2 × 5 × 50 = 167.5 kNm2 A2 = 1 × 10 × 60 = 300 kNm2



3

x1 =
2.5m

l1 = 5.0m

2

x2 = 10 + 6 = 5.33 m
3

l2 = 10 m



5MA + 2MB(5 + 10) +
10MC

=

−6

. 167.5 × 2.5

5.0

+

300 × 5.33 Σ

10



30 MB = −6 (83.75 + 159.9)

Properties of the simple beam BMD

V = 0; VA + VB1 = 80 (i) VB2 + VC = 25 (iii)



 M = 0; 5VA + 49

−

16(5)2

2 = 0 (ii)
10VB2 − 25(6) − 49 = 0(iv)



VA = 30.2 kN

VB1 = 49.8
kN

VB2 = 19.9 kN

VC = 5.1 kN





The simple beam moments are

MD = 20 × 102/8 = 250 kNm

ME = 50 × 6 × 2 = 75 kNm
8



A D B E C

FIG. 11.5b Simple beam moment diagram

Properties of simple beam BMD

A1 = 2 × 10 × 250 = 1666.7 kNm2 A2 = 1 × 8 × 75 = 300 kNm2



3

x1 = 5m

l1 = 10 m

2

x2 = 8 + 2 = 3.33 m
3

l2 = 8.0m



Since A is fixed imagine a span AjA of zero length and Aj as simply supported. Apply three moment

theorem for the spans AjAB.



AMj (0)+ 2MA(0 + 10)+ MB(10)=

−6

. 1666.7 × 5 Σ

10 + 0



20MA + 10MB = −5000

2MA + MB = −500 (i)

Apply three moment theorem for the spans ABC.



MA(10) + 2MB(10 + 8) +
8MC

=

−6

. 1666.7 × 5

10

+

300 × 3.33 Σ

8



Solving equations (i) and
(ii)

10MA + 36MB = −6(833.35 + 124.875)

10MA + 36MB = −5749.35 (ii)





Free body diagram of spans AB and BC



16 kNm

B
A

V

4 kN/m

C

V



V V
A B1

FIG. 11.7d

B2 C

FIG. 11.7e



Static equilibrium of AB Static equilibrium of BC

V = 0; VA + VB1 = 24 (i) VB2 + VC = 24 (iii)

M = 0; 4VA + 16 − 10 − 48 = 0 (ii) MB = 0;



10.5

 9.3
 x

A B D − C
−

14.7 kN
4 m 13.5 6 m

FIG. 11.7f Shear force diagram

+ C − ×VA = 10.5
kN.

VB1 = 13.5.

16 6V 4 62 0
2

VC = 9.3 kN.

VB2 = 14.7 kN.



24
 16 kNm 11

10 
− −

C

A B 3.67 m

FIG. 11.7g Bending moment diagram

The zero shear location in span BC is

14.7 − 4x = 0

x = 3.67 m.

∴ Maximum +ve BM = 14.7(3.67) − 4(3.67)2/2 − 16 = 11 kNm



Solving (i) and (ii); From eq (i); MB = −2MA and putting in eq (ii)

MA − 12MA = −60

Free body diagram of span AB and BC

5.45 kNm 10.9 kNm
A B B C



A V
B1

FIG 11.8d

V V
B2 C

FIG 11.8e



Static equilibrium of span AB Static equilibrium of span BC

V = 0; V = 0

VA + VB1 = 0 (i) VB2 + VC = 60 (iii)

MB = 0; MB = 0;



5.45 + 10.9 + 2VA = 0 (ii)
−10.9 + 2VB2

−

30 × 22

2 = 0



35.5 kN/m



10.9

9.55
−

A

 B D C

5.45 kNm

FIG. 11.8g Bending moment diagram

8.2 kN

FIG. 11.8f Shear force diagram

24.5





Applying three moment theorem for the span ABC
. 5 Σ . 5 6 Σ 6



MA I +
2MB

I +

1.5I

− 30 × 1.5I



. 240 × 2.67 360 × 3 Σ



= −6
5I + 6 × 1.5I



5MA + 18MB − 120 = −6 (128.16 + 120)

5MA + 18MB = −1488.96 + 120

5MA + 18MB = −1368.96 (ii)

Solving equations (i) and (ii)

Shear forces and moments in members AB and BC.

Member AB



3 m

33.76 kNm
V
AB

80 kN
2 m

D
66.67 kNm

V
BA



V = 0; VAB + VBA = 80 (i)

MB = 0; 5VAB + 66.67 − 33.76 − 80(2) = 0 (ii)

VAB = 25.42

∴ VBA = 54.58

FIG. 11.9d

MD = − 33.76 + 25.42(3) = 42.5 kNm.

Member BC



66.67 kNm 30 kNm



FIG. 11.9e



FIG. 11.9i Elastic curve

EXAMPLE 11.10: A continuous beam ABCD is simply supported at A and continuous over spans B and

C. The span AB is 6 m and BC are of length 6 m respectively. An overhang CD is of 1 metre length.

A concentrated load of 20 kN is acting at 4 m from support A. An uniformly distributed load of 10

kN/m is acting on the span BC. A concentrated load of 10 kN is acting at D.



20 kN

4 m 2 m

E
A 6 m

B

10 kN/m

F
6 m

10 kN

1 m D

C



FIG. 11.10a



The simple beam moments are

ME = 20 × 4 × 2 = 26.7 kNm
6



62

MF = 10 × 8 = 45.0 kNm
MC = −10 × 1 = −10 kNm

A E B F C

FIG. 11.10b Simply suppored BMD



A B C D

FIG. 11.10c Pure moment diagram

Considering spans ABC

Properties the simple beam BMD

A1 = 1 × 6 × 26.7 = 80.1 kNm2 A2 = 2 × 6 × 45 = 180 kNm2



2

x1 = 6 + 4 = 3.33

m.
3

l1 = 6 m.

3

x2 = 3 m.

l2 = 6 m.





. 6
+ 2MB I

6 Σ
+ 2I

(−10)

+ 6MC
2I =

−6

. 80.1 × 3.33

6

+

180 × 3 Σ

6 × 2



18MB − 30 = −6 (44.45 + 45)

MB = 28.15 kNm.

Shear force and bending moment values for the spans AB and BC



20 kN
4 2

A E

V
AB

28.15 kNm

B

V
BA



FIG. 11.10d



Using equilibrium
conditions;

V = 0; VAB + VBA = 20 (i)

M = 0; 6VAB + 28.15 − 20(2)= 0 (ii)



∴ ME = VAB(4)= 7.9 kNm





28.15 kNm 10 kN/m 10 kNm



7.9  26


10 kNm
 − −

A B E C D

FIG. 11.10g Bending moment diagram

B C
V 6 m VBC CB

FIG. 11.10e

Using equilibrium conditions;

V = 0; VBC + VCB = 10(6)= 60 (iii)
M 62

 C= 0 10 − 28.15 + 6 VBC − 10 × 2 = 0 (iv)

18.02

FIG. 11.10f Shear force diagram



EXAMPLE 11.11: Analyse the continuous beam shown in figure by three moment theorem. Draw

SFD & BMD.



30 kN

4 2

40 kN

2 2

20 kN



E F
A B C

2 m D



FIG. 11.11a

SOLUTION

The simple beam moments at E and F are

ME = Wab= 30 × 4 × 2 = 40 kNm
l 6

MF = Wl = 40 × 4 = 40 kNm
4 4

A E B F C D

FIG. 11.11b Simply supported beam BMD

A B C D

FIG. 11.11c Pure moment diagram

Properties of simply supported beam BMD

A1 = 1 × 6 × 40 = 120 kNm2 A2 = 1 × 4 × 40 = 80 kNm2



2

x1 = 6 + 4 =

3.33
3

l1 = 6.00

2

x2 = 2 m.

l2 = 4.0 m.





Applying three moment theorem for spans AB & BC

. 1 3.3
3

80(2) Σ



6MA+ 2MB(6 + 4) + 4MC=
−6

2 × 6 × 40 × 6.00 + 4



20MB − 160 = −6 (66.6 + 40)

20MB = −479.6

Free Body diagrams



30 kN

4 m 2 m
E

24 kNm

40 kN

2 m 2 m
F 40 kNm



VV V
A B1 B2

FIG. 11.11d

V
C

FIG. 11.11e





V = 0; VA + VB1 = 30 (i)

MB = 0; 6VA + 24 − 30(2)= 0 (ii)

V = 0; VB2 + VC = 40 (iii)

MB = 0; 40 + 40(2) − 24 − 4VC = 0

(iv)

∴



20

6

 24 kN

FIG. 11.11f Shear force diagram





40 40 40 kNm

 −24 −

A E B F C D

FIG. 11.11gBending moment diagramEXAMPLE 11.12: Draw the shear force diagram and bending moment diagram for the beam shown

in figure.

10 kN/m

C

FIG. 11.12a

A B C

FIG. 11.12b Simply supported beam BMD

SOLUTION

As the end A is fixed, imagine an imaginery span AjA of zero length with no load and Aj is simply
supported.

Considering the span AjAB



. 2
0 +j

Σ

× 3 × 11.25 1.53



MA(0) + 2MA(0 + 3) + 3MB = −6
3

6MA + 3MB = −67.5

(i)



Considering the span ABC

3MA + 2MB(3 + 6) + 6MC=

−6

. 22.5 × 1.5

3

+

180 × 3 Σ

6



3MA + 18MB = −6 (11.25 + 90)

3MA + 18MB = −607.5 (ii)



45 kNm

11.25

34.77 +

+ −

A B C
+

6.14 kNm

FIG. 11.12c Bending moment diagram

Solving (i) & (ii)

The BMD is drawn using the above end moments as

Shear force and BM values for spans AB and BC

Static equilibrium of AB



6.14 kNm
10 kN/m 34.77 kNm



A 3 m B
VAB V

BA

FIG. 11.12d

V = 0; VAB + VBA = 30 (i)
M 32

 B= 0; 34.77 + 6.14 + 3VAB − 10 × 2 = 0 (ii)

Static equilibrium of BC

B C

CB

FIG. 11.12e





34.77 kNm
6.28

29.3
−

+ +

A B E C
+

2.42 m

6.14

FIG. 11.12g Bending moment diagram

5

V = 0; VBC + VCB = 10(6)= 60 (iii)

M 62

 C= 0; − 34.77 + 6VBC − 10 × 2 = 0
Maximum positive BM is span AB

The location of zero shear force in AB zone is

1.36 − 10x1 = 0.

x1 = 0.135 m

35.8

FIG. 11.12f Shear force diagram

MX1X1 = 6.19 + 1.35 (0.135) − 10 (0.135)2/2 = 6.28 kNm.



Maximum positive BM in span BC

The location of zero shear force in BC zone is

24.2 − 10 x2 = 0

x2 = 2.42 m

M×2×2 = 24.2(2.42) − 10(2.42)2/2

= 29.3 kNm.

EXAMPLE 11.13: A continuous beam ABCD is of uniform section. It is fixed at A, simply supported at

B and C and CD is an overhang. AB = BC = 5 m and CD = 2 m. If a concentrated load of 30 kN

acts at D, determine the moments and reactions at A, B and C. Sketch the shear force and bending
moment diagram and mark in the salient values.

30 kN

A' A B C D

FIG. 11.13a

SOLUTION

As the end A is fixed imagine a imaginery span AjA of zero length and Aj is simply supported.

Apply three moment theorem for the spans AjAB



MA(0)
+ 2MA(0 + 5) + 5MB

= −6(0 + 0) 10MA +

5MB = 0

2MA + MB = 0 (i)



Apply three moment theorem for the spans ABC

5MA + 2MB(5 + 5) − 60(5) = −6(0 + 0)

5MA + 20MB = 300 (ii)

Solving (i) and (ii)



Shear force and BM values for spans AB and BC

Span AB



8.57 kNm 17.14 kNm



A B
V V
AB BA

FIG. 11.13b

V = 0; VAB + VBA = 0 (i)

MB = 0; 5VAB − 8.57 − 17.14 = 0

Span BC

17.14 kNm 60 kNm

B C
V V
BC CB

FIG. 11.13c

V = 0; VBC + VCB = 0

M = 0; 60.0 + 17.14 + 5VBC = 0

30 kN
5.14



FIG. 11.13d Shear force diagram



8.57

17.10 kNm

FIG. 11.13e Bending moment diagram

EXAMPLE 11.14: Analyse the continuous beam by the theorem of three moments. Draw neat sketches

of SFD and BMD. Clearly indicate all the salient values.

A' A C D E

FIG. 11.14a



SOLUTION

The simple beam moments
are

M

wl2 wl 42 4



B = 8 + 4 = 20 × 8 + 16 × 4 = 56 kNm
MD = wl = 40 × 4 = 40 kNm

4 4

A B C D E

FIG. 11.14b Simple beam moment diagram



A B C E

FIG. 11.14c Simple beam moment diagram

Properties of simple beam BMD

A1 = 2 × 4 × 40 + 1 × 4 × 16 = 138.67 A2 = 1 × 4 × 40 = 80 kNm2



3 2
l1 = 4m

x1 = 2m

2
x2 = 2m

l2 = 4m



Applying three moment theorem for span AjAC



A

.

M j l1 + 2MA

Σ

+ l2 + MCl2 = −6 A1x1
l1

+ A2x2
l2



2MA(4)+ 4MC = −6 × 138.67 × 2
4

8MA + 4MC = −416.01 (i)



Applying theorem of three moments for the spans ACE

MA(4)+ 2MC(4 + 4) + ME (4) =

−6

. 138.67 × 2

4

+

80 × 2 Σ

4



4MA + 16MC = −6(109.335)= −656.01 (ii)

Solving Equations (i) and (ii)



Free body
diagram

36 kNm 2 m

V

16 kN

4 m

20 kN/m 32 kNm

V

32 kNm
2 m

VC2

40 kN

4 m VE



A B C1 C D E



A C

FIG. 11.14d
FIG. 11.14e



56 40 kNm

 
36 32

− −

A B C D E

FIG. 11.14g Bending moment diagram

Static equilibrium of
AC

Static equilibrium of CE

V = 0; V = 0;

VA +VC1 = 16 + 4(20)= 96 (i) VC2 +VE = 40 (iii)

MA = 0

42
−36 + 32 + 4VA − 16(2) − 20 × 2 = 0 (ii)
VA = 49 kN

VC1 = 47 kN

ME = 0;

−32 + 4VC2 − 40(2)= 0 (iv)

∴ VC2 = 28 kN

VE = 12 kN

49
28

  
B D E

A  C 
7

 kN 

FIG. 11.14f Shear force Diagrams

EXAMPLE 11.15: Sketch the BMD for the continuous beam shown in figure.



60 kN 20 kN/m 30 kN



1 m 3 m



O
A' A D B

FIG.
11.15a

4 m 1 m

E 4I C F



A D B E C

FIG. 11.15b Simple beam moment diagram

M
B

M
A

A B C

FIG. 11.15c Pure moment diagram



SOLUTION
Properties of the simple beam BMD



A1 = 1 × 4 × 45 = 90

kNm2

2

x1 = 4 + 1 = 1.67 m
3

l1 = 4m

A2 = 2 × 4 × 40 = 106.7 kNm2

3

x2 = 2m

l2 = 4m



Since A is fixed assume an imaginery span of AjA of zero length with no loading. Assume Aj as simply

supported. Apply three moment equation for the span AjAB,



A

M j (0)+ 2MA 0 + 4 + MB 4 = −6 0 + 90 × 2.33
× 3I



8MA + 4MB = −315 (i)

Applying three moment theorem for the spans AB and BC;



. 4 Σ . 4 4 Σ . 4 Σ . 90 × 1.67 106.7 × 2 Σ



MA 3I
+
2MB

3I +

4I

+ MC 4I =
−6

4 × 3I

+

4 × 4I .



Solving (i) and (ii);

1.33MA + 2MB(1.33 + 1.0) − 30 = −6 (12.525 + 13.338)

1.33MA + 4.66MB = 30 −(25.863)6

1.33MA + 4.66MB = −125.18 (ii)





Free body diagrams of span AB and BC



30.3 kNm
60 kN

18.1 kNm
18.1 kNm 20 kN/m 30 kNm



1 m 3 m B C



A V V B V 4 m V



A

FIG 11.15d

B1 B2 C

FIG 11.15e



Static equilibrium of AB Static equilibrium of BC

V = 0; V = 0;

VA + VB = 60 (i) VB2 + VC = 80 (iii)

MB = 0; MB = 0



48.05
30

37.02
  

A D − B E − C F1.85
11.95

42.98 kN

FIG. 11.15f Shear force diagram

 15.95

30.3  18.1 30.0 kNm
− 45.0 −

−

A D B E C
F

FIG. 11.15g Bending moment diagram

−30.3 + 18.1 + 4VA −

60(3)= 0 VA = 48.05 kN (ii)

VB2 = 11.95 kN

42

−18.10 + 30 + 4VB2 − 20 × 2 = 0
VB2 = 37.02 kN.

VC = 42.98 kN.





EXAMPLE 11.16: Analyse the continuous beam by three moment theorem. E is constant. Draw the

bending moment diagram.



2 m

80 kN 20 kN/m1 m



A' 3 m E 4 m F 1 m D



A 3I B

FIG.
11.16a

2I C 2I



53.33 40 kNm

A E B F C D

FIG. 11.16b Simple beam BMD

M
B

M
A

A B C D

FIG. 11.16c Pure moment diagram

SOLUTION

As the end A is fixed assume an imaginery span Aj of zero length with no load and Aj is simply

supported;
Apply three moment theorem for spans AjAB



A +
j + 2M 0
A

3I

3

+ 3I B

. 3 Σ

3I

.

= −6 0 +
80 × 1.33 Σ

3 × 3IM



2MA + MB = −70.93 (i)

Applying three moment theorem for spans ABC



. 3 Σ . 3 4 Σ . 4 Σ . 80 ×

1.67

106.67 × 2 Σ



MA 3I
+
2MB

3I +

2I

− 10

2I

=
−6

3 × 3I

+

2I × 4



MA + 6MB − 20 = −6(14.84 + 26.67)

MA + 6MB = −249.06 (ii)



Solving (i) and (ii)

Free Body diagrams of span AB and BC



16.05 kNm 80 kN 38.84 kNm 20 kN/m 10 kNm



2 m 1 m 38.84 kNm



V E VA B1

FIG. 11.16d

V 4 m VB2 C

FIG. 11.16e





V = 0;

VA + VB1 = 80 (i)

MB = 0

V = 0;

VB2 + Vc = 80 (iii)

MC = 0



−16.05 + 38.84 − 80(1)+ 3VA = 0 (ii)
10 − 38.84 + 4VB2

−

20 × 42

2 = 0 (iv)



ME = −17.86 + 20.88(2)

= 23.9 kNm

The location of zero shear in zone BC is obtained from

47.21 − 20x = 0

x = 2.36 m



∴ Max +ve
BM

= −38.84

+

47.21

×

2.36

− 20

×

2.362

2



= 16.88 kNm

At the midspan of BC;

M 22

F = −38.84 + 47.21 × 2 − 20 × 2 = 15.58 kNm



19.07
47.21

 20

 

A E B C D

− −

60.93 33.79

FIG. 11.16f Shear force diagram

 15.58

  
 10 kNm

− −
−

A 2 m E 1 m B 2.32 m C 1 m D

FIG. 11.16g Bending moment diagram



EXAMPLE 11.17: A continuous beam ABC is fixed at A and C. It is continuous over a simple support

B. Span AB is 5 m while BC span is 6 m. It is subjected to a concentrated load of 60 kN at 3 m

from A and the span BC is subjected to uniformly distributed load of 10 kN/m. The ratio of flexural

rigidity of span BC to BA is 1.5. Sketch the shear force and bending moment diagram. Use

Clapeyron’s theorem of three moments.



60 kN

3 m 2 m

10 kN/m



A' A

5 m 6 m
B C C

FIG. 11.17a





SOLUTION

The simple beam moments
are MD = Wab= 60 × 3 × 2 = 72 kNm



ME =

l
wl2

8 =

5
10 ×
62

8 = 45 kNm



72 45 kNm

A D B E C

FIG. 11.17b Simple beam BMD

M
B

M
A M

C

A B C

FIG. 11.17c Pure moment diagram

Since A is fixed imagine a span of zero length AjA with no load and Aj is simply supported.

Apply three moment theorem for the spans AjAB

Properties of the simple beam BMD

A1 = 0 A2 = 1 × 5 × 72 = 180
2

x1 = 0 x2 = 5 + 2 = 2.33
3

l1 = 0 l2 = 5.0



l l 1
.

M j 1

Σ . l+ 2MA
1 + Σ . Σ

2 + MB 2 =
−6

. A x

1+

Σ
A2x2l



A I1 I1 I2
I2

l1 l2



2MA

. 5 Σ

I +
MB

. 5 Σ

I =

−6

. 180 × 2.33 Σ

5 × I



10MA + 5MB = −503.28 (i)

Apply three moment theorem for the spans ABC

Properties of the simple beam BMD

A1 = 180 kNm2 A2 = 2 × 6 × 45 = 180 kNm2

3

x1 = 5 + 3 = 2.67 m x2 = 3m
3

l1 = 5m l2 = 6m





. 5 Σ . 5 6 Σ . 6 Σ . 180 × 2.67 180 × 3 Σ



MA I +
2MB

I +

1.5I

+
MC

1.5
I

=
−6

5 + 6 × 1.5



5MA + 18MB + 4MC = −6 (96.12 + 60)

5MA + 18MB + 4MC = −936.72 (ii)

Applying three moment theorem BCCj

As the end C is fixed imagine a span CCj of zero length and Cj is simply supported



C

. 6
MB 1.5I

Σ

+
2MC

. 6

1.5

I

Σ

+ 0 +

Mj
=

−6

. 180 × 3 Σ

6 × 1.5 + 0



4MB + 8MC = −360 (iii)

Solving equations (i), (ii) and (iii)

Shear force and bending moment values for the spans AB and BC respectively.

Span AB



31.62 kNm
A 3 m

V

60 kN
2 m

D

37.4 kNm

B
V



AB BA



Span BC

FIG. 11.17d

V = 0; VAB + VBA = 60 (i)

MB = 0; 5VAB − 60(2) − 31.62 + 37.4 = 0 (ii)

VAB = 22.84 kN

VBA = 37.16 kN

MD = 22.84(3) − 31.62 = 36.9 kNm





37.4 kNm 10 kN/m 26.29 kNm



B C
E

V 6 m VBC CB

FIG. 11.17e



V = 0; VBC + VCB = 60 (iii)
M 62

 C= 0; − 37.4 + 26.29 + 6VBC − 10 × 2 = 0M 32

E = 31.85(3) − 37.4 − 10 × 2 = 13.15 kNm



22.84



A D 

31.85


F

B  C

37.16



FIG. 11.17f Shear force diagram

2.81
5

28.15 kN



 37.49 37.4  13.15
31.62 26.29 kNm
− −

A D B F C

FIG. 11.17g Bending moment diagram

The location of zero shear in span CB is obtained by equating the shear force equation to zero as

(SF)xx = 28.15 − 10x = 0

x = 2.815 m

MF = 28.15(2.815) − 10(2.815)2/2 − 26.29

= 13.2 kNm



EXAMPLE 11.18: A continuous beam ABCD is of uniform section as shown in figure. EI is constant.

Draw the SFD and BMD

10 kN/m



A 6 m B
6 m C 6 m D



E F G

FIG. 11.18a



SOLUTION

The simple beam moments
are

ME = MF = MG

=

10 × 62

8 = 45 kNm



B

45 45 45 kNm

A B C D

FIG. 11.18b Simple beam BMD

M M
C

A D
B C



Considering spans ABC

FIG. 11.18c Pure moment diagram

A1 = 2 × 6 × 45 = 180 KNm2

3

x1 = 3m



+ 2MB(6 + 6) + 6MC =

−6

. 180 × 3

6

+

180 × 3 Σ

6



24MB + 6MC = −6(90 + 90)= −1080 (1)





Considering span
BCD

6MB + 2MC(6 + 6) + 6MD =

−6

. 180 × 3

6

+

180 × 3 Σ

6



6MB + 24MC = −1080 (2)

Solving Equations (1) and (2)

Shear force and bending moment values in the spans ABC, BCD

Consider span AB



10 kN/m

A
36 kNm
B



V 6 m VAB BA

FIG. 11.18d

V = 0; VAB + VBA = 6(10)= 60 (i)
M 62

 B= 0; 6VAB + 36 − 10 × 2 = 0 (ii)

∴

Consider span BC



36 kNm

B
V

10 kN/m

6 m

36 kNm

C
V



BC CB

FIG. 11.18e

V = 0; VBC + VCB = 60 (iii)
M 62

 C= 0; 6VBC − 36 + 36 − 10 × 2 = 0 (iv)VBC = 30 kN, VCB = 30 kN







Span CD

36 kNm 10 kN/m



24 30 36

  
E F G

A − B − C − D
x 3 m
1

36 30 24 kN
6 m 6 m 6 m

2.4

 928.8 36 36 28.8 kNm


− − 

A E B F C G D

FIG. 11.18h Bending moment diagram

C DV 6 m VCD DC

FIG. 11.18f

V = 0; VCD + VDC = 10 × 6 = 60 (v)
M 62

 D= 0; 6VCD − 36 − 10 × 2 = 0

FIG. 11.18g Shear force diagram

The location of zero shear is calculated as

24 − 10x1 = 0

x1 = 2.4m

ME = 24(2.4) − 10(2.4)2/2 = 28.8 kNm

MF = 30(3) − 36 − 10 × 32/2 = 9.0 kNm

MG = 24 (2.4) − 10(2.4)2/2 = 28.8 kNm



EXAMPLE 11.19: Analyse the continuous beam by three moment theorem. Also draw SFD and BMD.

A E B F C G D

FIG. 11.19a

49

A E B F C G D

FIG. 11.19b Simply supported BMD

M
B C

A B C D

FIG. 11.19c Pure moment diagram

M



SOLUTION
Properties of the simple beam BMD



A1 = 2 × 3 × 28.1 = 56.2

kNm2

3
x1 = 1.5m

l1 = 3m

A2 = 2 × 2.8 × 49 = 91.47

kNm2

3
x2 = 1.4m

l2 = 2.8m

A3 = 80 kNm2

x3 = 2m

l3 = 4m



Applying three moment theorem for spans ABC

MA(3)+ 2MB(3 + 2.8)+ 2.8MC =

−6

. 56.2 × 1.5

3

+

91.47 × 1.4 Σ

2.8



11.6MB + 2.8MC = −6(28.1 + 45.74)

11.6MB + 2.8MC = −443 (i)







Applying three moment theorem for spans BCD

2.8MB + 2MC(2.8 + 4) + 4MD

= −6

. 91.47 × 1.4

2.8

+

80 × 2 Σ

4



Solving (i) and (ii)

2.8MB + 13.6MC = −6 (45.74 + 40)

2.8MB + 13.6MC = −514.44 (ii)



Free body diagrams of AB, BC and CD



25 kN/m 30.58 kNm
30.58 kNm 50 kN/m 31.53 kNm 31.53 kNm 15 kN/m





V 3 m VA B1

V 2.8 m VB2 C1 V 4.0 m VC1 D



FIG. 11.19d
FIG. 11.19e FIG. 11.19f



V = 0;

VA + VB1 = 75 (i)

V = 0;

VB2+ VC1 = 140 (iii)

V = 0;

VC2+ VD = 60 (v)

 MB = 0;  MC = 0;  MD = 0;

Static equilibrium of spans AB, BC and CD



3VA + 30.58

−

25

2 × 3
= 0 (ii) 31.53 − 30.58 +

2.8VB2
2.82

42

−31.53 + 4VC2 − 15 × 2 = 0 (vi)
2



−50 × 2 = 0 (iv)



27.3 69.66 37.88

  

x x x
1 − 2 − 3 −

47.7 70.34 22.12
kN
FIG. 11.19g Shear force diagram

VA = 27.3 kN

VB1 = 47.7
kN

VB2 = 69.66
kN

VC = 70.34
kN

VC2 = 151.53/4 = 37.88

kN

VD = 22.12 kN







14.9 30.58  17.94 31.53  16.3

28.1  30 kNm
− −

1.09 1.39 2.52 m

FIG. 11.19h Bending moment diagram

27.3 − 25x1 = 0 69.66 − 50x2 = 0 37.88 − 15x3 = 0

x1 = 1.09 m x2 = 1.39 m x3 = 2.52
m

The locations of shear forces in zones AB, BC and CD are

M1 = 27.3(1.09) − 25 × 1.092/2 = 14.9 kNm

M2 = −30.58 + 69.66(1.39) − 50 × 1.392/2 = 17.94 kNm

M3 = −31.53 + 37.88(2.52) − 15 × 2.522/2 = 16.3 kNm

EXAMPLE 11.20: Analyse the continuous beam by theorem of three moments and draw SFD and

BMD. EI is constant.

A E B F C G D

FIG. 11.20a

A B C

FIG. 11.20b Simple beam BMD for span ABC



B C D

FIG. 11.20c Simple beam BMD for span BCD

FIG. 11.20d Pure moment diagram



SOLUTION

Referring to Fig. 11.20 b
Properties of simple beam BMD



A1 = 1 × 10 × 4 = 20 kNm2

2

x1 = 2m

l1 = 4m

Applying three moment theorem for spans ABC,

A2 = 2 × 6 × 22.5 = 90 kNm2

3

x2 = 3m

l2 = 6m



4MA+ 2MB(4 + 6) + 6MC =

−6

. 20 × 2

4

+

90 × 3 Σ

6



Referring to Fig. 11.20 c

20MB + 6MC = −6(10 + 45)

20MB + 6MC = −330 (i)

Properties of simple beam BMD



A1 = 2 × 6 × 22.5 = 90

kNm2

3

x1 = 3m

l1 = 6m

A2 = 1 × 5 × 18 = 45 kNm2

2

x2 = 5 + 2 = 2.33 m
3
l2 = 5m





Applying three moment theorem for spans BCD

Considering span BCD

6MB + 2MC(6 + 5) + 5MD=

−6

. 90 × 3

6

+

45 × 2.33 Σ

5



Solving (i) and (ii)

6MB + 22MC = −6(45 + 20.97)

6MB + 22MC = −395.82 (ii)

MB = 12.09 kNm.

MC = 14.69 kNm.



Shear force and bending moment values for spans AB, BC and CD.



A

V V
AB BA

.09 kNm



Solving (i) and (ii)

FIG. 11.20e

V = 0; VAB + VBA = 10 (i)

MB = 0; 4VAB + 12.09 − 10(2) = 0 (ii)



ME = 1.98(2)= 3.96 kNm

Span BC



12.09 kNm 5 kN/m

14.69 kNm



B C
V 6 m VBC CB

FIG. 11.20f

V = 0; VBC + VCB = 6(5)= 30 kN (iii)



MB = 0; 6VBC + 14.69 − 12.09

−

5 × 62

2 = 0







The location of shear force is zero is found out as

14.56 − 5x = 0

x = 2.91 m



HenceMax veBM 14 56 2 91 12 09 5
2.912

9 11 kNm



Span CD

+ = . ( . )− . − ×
2 = .





14.69 kNm
15 kN



1.98 14.56 8.94

  

D
A E B C

− − −
6.06 kN

8.02 14.69

FIG. 11.20h Shear force diagram


 12.09 9.11 15.44 kNm  12.12

3.96 − −

A E B C D

FIG. 11.20i Bending moment diagram

C 3 m 2 m D
V V
CD CD

FIG. 11.20g

V = 0; VCD + VDC = 15 (iv)

MD = 0; 5VCD − 14.69 − 15(2) = 0



EXAMPLE 11.21: A continuous beam ABCD is simply supported at A and D. It is continuous over

supports B and C. AB = BC = CD = 4 m. EI is constant. It is subjected to uniformly distributed load

of 8 kN/m over the span BC. Draw the shear force diagram and bending moment diagram.

8 kN/m

A B E C D



SOLUTION

The simple beam moment

ME =

FIG. 11.21a

8 × 42

8 = 16 kNm



16 kNm

A B E C D

FIG. 11.21b Simple beam bending moment diagram

B M
C

A B C D

FIG. 11.21c Pure moment diagram

Consider span ABC
Applying three moment theorem;

M



4MA + 2MB(4 + 4) + 4MC =

−6

.

0 + 2

×
3

4 × 16 × 2 Σ

4



16MB + 4MC = −128 (i)

Consider span BCD
. 2 4 × 16 × 2 Σ

4MB + 2MC(4 + 4) + 4MD= −6 3 × 4 + 0

4MB + 16MC = −128 (ii)



Solving (i) and (ii)

Shear force and bending moment values of spans AB, BC and CD

span AB

4 kNm

V V
AB BA

FIG. 11.21d

V = 0; VAB + VBA = 0 (i)

MB = 0; 4VAB + 6.4 = 0 (ii)

span BC



6.4 kNm 8 kN/m 6.4 kNm



B C
V 4 m VBC CB

FIG. 11.21e

V = 0; VBC + VCB = 8(4)= 32 (iii)



MC = 0; − 6.4 + 6.4 + 4VBC

−

8 × 42

2 = 0 (iv)





span CD

6.4 kNm

C D



V V
CD CD

FIG. 11.21f



16

  1.6 kN
B

A − − C D

−

16

FIG. 11.21g Shear force diagram

16 kNm


6.4 6.4

− −

A B C D

FIG. 11.21h Bending moment diagram

V = 0; VCD + VDC = 0 (v)

MD = 0; − 6.4 + 4VCD = 0 (vi)

EXAMPLE 11.22: Analyse the beam shown in figure by SFD and BMD. EI is constant.

10 kN/m



A 6 m B 6 m C 6 m

FIG. 11.22a

D 6m E



45 45

A B C D E

FIG. 11.22b Simple beam BMD



M M M
B C D

A B C D E



Properties of simple beam
BMD

FIG. 11.22c Pure moment diagram



A1 = 2 × 6 × 45 = 180 A2 = 2 × 6 × 45 = 180 KNm2

3 3

x1 = 3m x2 = 3m

l1 = 6m l2 = 6m



Applying 3 moment theorem for the spans ABC
.

6MA+ 2MB(6 + 6) + 6MC = −6 0

+

180 × 3 Σ

6



24MB + 6MC = −540 (i)

Applying 3 moment theorem for the spans BCD



6MB + 2MC(6 + 6) + 6MD =

−6

. 180 × 3
6

+

180 × 3 Σ

6



6MB + 24MC + 6MD = −6(180)= −1080

MB + 4MC + MD = −180 (ii)

Applying 3 moment theorem for spans CDE
. 180 × 3 Σ



6MC + 2MD(6 + 6) + 6ME =
−6

6 + 0



6MC + 24MD = −540 (iii)

solving equations (i), (ii) and (iii)

Free body diagram of AB, BC, CD and DE

span AB

A B 12.86 kNm

V V
AB BA

FIG. 11.22d



V = 0; VAB + VBA = 0 (i)

MB = 0; 6VAB + 12.86 = 0 (ii)

span BC



12.86 kNm 10 kN/m 38.57 kNm



B C
V 6 m VBC CB

FIG. 11.22e

V = 0; VBC + VCB = 60 (iii)



MC = 0; − 12.86 + 38.57 + 6VBC

−

10 × 62

2 = 0 (iv)



span CD



38.57 kNm

C
V
CD

10 kN/m

6 m

12.86 kNm

D
V
DC



FIG. 11.22f

V = 0; VCD + VDC = 6(10)= 60 kN (v)
M 62

 D= 0; 12.86 − 38.57 + 6VCD − 10 × 2 = 0 (vi)span DE

12.86 kNm

V 6 m VDE ED

FIG. 11.22g



SOLUTION

MB = −20(1)= −20 kNm

The simple beam moments are



MF =
20 × 42

8 = 40 kNm



MG = 60 × 4 = 60 kNm
4

40 kNm 60 kNm

B C F D G E

FIG. 11.23b (b) Simple beam BMD

M

20

B C D E

FIG. 11.23c (c) Pure moment diagram

Apply 3 moment theorem for the spans BCD
. 2 2 Σ



−20(3) + 2MC(3 + 4) + MD(4)=
−6

0 + 3 × 4 × 40 × 4



−60 + 14MC + 4MD = −320

14MC + 4MD = −260 (i)

Apply 3 moment theorem for the spans CDE
. 2 2 1 2 Σ



MC(4)+ 2MD(4 + 4) + 4ME=
−6

3 × 4 × 40 × 4 + 2 × 4 × 60 × 4



4MC + 16MD = −6(53.33 + 60) = −680 (ii)

Solving (i) and (ii)




.  Σ+ 6EI A + C

L1 L2

A1x1 = 960

A2x2 = 2 × 6 × 180 × 3 = 2160
3



Σ 960 2160 Σ . 240 120 Σ



Substituting, MA × 4 + 2MB(4 + 6)=
−6

4 + 6
+
6EI EI × 4 + EI × 6



4MA + 20MB = −3120 → MA + 5MB = −780 (2)
Σ



Solving (1) and (2), MA = −163.33

kNm
MB = −123.33
kNm

hogging BM.





163.33 kNm 2 m

240 kN

2 m 123.33 kNm
40 kN/m



A B B O
6 m C

130 kN 110 kN 140.56 kN 94.44 kN

FIG. 11.25d Free body diagram of spans AB and BC



130 kN
140.56





A B C
94.44



110

FIG. 11.25e Shear force diagram



163.33 kNm



240


123.33


 180



FIG. 11.25f Bending moment diagram



(11.3) A continuous beam of uniform section ABCD is supported and loaded as shown in Figure. If

the support B sinks by 10 mm, determine the resultants and questions at the supports.

B C

Ans:

RA = 45kN, RB = 165.5kN, RC = 69.5kN

(11.3) A continuous beam of uniform section ABCD is supported and loaded as shown in gure.
If the support B sinks by 10 mm, determine the resultants and moments at the supports.

Assume E = 2(10)5 N/mm2; I = 6(10)7 mm4



10 kN/m
40 kN



3 m 20 kNm



A 4 m B 6 m C 1m D



EI = Constant



Ans:

VAB = +16.5 kN, VBA = +23.5, VBC = +19, VCB = +21.0

MB = −14 kNm



(11.4) Determine the reactions at A, B and C of the continuous beam shown in figure.



8 kN 3 kN/m



1 m 3m
A 4 m 5 m

I



Ans:

VAB = 6.75 kN, VBA = 1.25, VBC = 6.31; VCB = 8.69

MA = −3.31 kNm, MB = −3.87, MCB = +7.44



(11.5) Analyse the continuous beam shown in Figure and determine the reactions



80 kN
50 kN/m

40 kN

1 m 2 m 2 m 2 m

4 m 4 m 4 m



A B 2I C D

Ans:

VAB = 41.68 kN, VBA = 38.32, VBC = 102.88, VCB = 97.12

VCD = 28.03, VDC = 11.97, MA = −17.98 kNm,

MB = −52.93, MC = −41.42, MD = −9.29 kNm

(11.6) Analyse three span continuous beam by three moment theorems. Draw the BMD and shear

force diagram. Determine the end moments and reactions EI is constant.

75 kN/m

Ans:

(i) RA = 75.39 kN, RB = 127.59 kN, RC = 97.85 kN, RD = 99.17 kN

MA = −75.78 kNm, MB = −73.44 kNm, MC = −55.55 kNm, Md = −55.2 kNm.

(11.7) Analyse and draw BMD and SFD for the beam shown in Figure. The values of second moment

area of each span are indicated along the members. Modulus of elasticity is constant.

EI = Constant
25 kN/m

2 m

50 kN 50

2 m

A 6 m B 6 m C 4 m D



100 kN 30 kN/m
80 kN 40 kN



2.5 m

2
I

A

2.5 m

3I
B 6 m

1.25 m

C

2.5 m

4I

1.25 m

D



Ans:

MA = −56.02 kNm, MB = −75.47 kNm, MC = −94.3 kNm, MD = 0



(11.11) Determine the reactions and the support moment at B. Using Clapeyron’s three moment theo-

rem.

A B C

Ans:

VA = 4.81 kN, VB = 0.31, VC = 4.88 kN, MB = −0.72 kNm

(11.12) Analyse the continuous beam by three moment theorem, determine the support moments. No

loads on span AB.

EI = Constant



0.5 kN 2.5 kN



Ans:

MA = −1.09 kNm, MB = −2.188 kNm, MC = −7.5 kNm



UNIT - VI

CONTINUOUS BEAMS - SLOPE DEFLECTION METHOD

3.1 Introduction:-

The methods of three moment equation, and consistent

deformation method are represent the FORCE METHOD of

structural analysis, The slope deflection method use

displacements as unknowns, hence this method is the

displacement method.

In this method, if the slopes at the ends and the relative

displacement of the ends are known, the end moment can be

found in terms of slopes, deflection, stiffness and length of the

members.

In- the slope-deflection method the rotations of the joints are

treated as unknowns. For any one member bounded by two joints

the end moments can be expressed in terms of rotations. In this

method all joints are considered rigid; i.e the angle between

members at the joints are considered not-to change in value as

loads are applied, as shown in fig 1.

joint conditions:- to get θB & θC MBA+MBC+MBD =

0 …………. ( 1 )

MCB+MCE = 0 …………. ( 2 )











Figure (1)

3.2 ASSUMPTIONS IN THE SLOPE DEFLECTION METHOD

This method is based on the following simplified

assumptions.

1- All the joints of the frame are rigid, i.e, the angle between

the members at the joints do not change, when the members

of frame are loaded.

2- Distortion, due to axial and shear stresses, being very

small, are neglected.

3.2.1 Degree of freedom:-

The number of joints rotation and independent joint

translation in a structure is called the degrees of freedom. Two

types for degrees of freedom.

In rotation:-

For beam or frame is equal to Dr.

Dr = j-f



Where:

In translation:-

Dr = degree of freedom.

j = no. of joints including supports.

F = no. of fixed support.



For frame is equal to the number of independent joint

translation which can be give in a frame. Each joint

has two joint translation, the total number or possible

joint translation = 2j. Since on other hand each fixed

or hinged support prevents two of these translations,

and each roller or connecting member prevent one

these translations, the total number of the available

translational restraints is;

2f + 2h + r + m where

f = no. of fixed supports.

h = no. of hinged supports.

r = no. of roller supports.

m = no. of supports.

The degree of freedom in translation, Dt, is given by:-

The combined degree of freedom for frame is:-

D = Dr + Dt

= j-f + 2j – (2f + 2h + r + m)

Dt = 2j-(2f+2h+r+m)



The slop defection method is applicable for beams and

frames. It is useful for the analysis of highly statically

indeterminate structures which have a low degree of kinematical

indeterminacy. For example the frame shown in fig. 2.a

The frame (a) is nine times statically indeterminate. On other

hand only tow unknown rotations, θb and θc i.e Kinematically

D = 3j – 3j – 2h – r - m



indeterminate to second degree- if the slope deflection is used.

The frame (b) is once indeterminate.

3.3 Sign Conventions:-

Joint rotation & Fixed and moments are considered positive

when occurring in a clockwise direction.











θ Al

 2

MA.L

3 2 EI

MA.L

3 EI





θ  1 
MA.L  MA.L



BI 3 2 EI 6 EI





hence θ B1 
1
2 θA1





θA2  1 MB.L  MB.L



3 2 EI 6 EI

θ  2 MB.L MB.L



B2 3 2 EI 3 EI



θB1 + θB2 = 0



Hence: MA = 2MB

and θA = θA1 -θA2





M A .L
3 EL

M A .L
12 EL



 A
3MA.L
12EI



MA  4EI .θA
L

MB  2EI .θA
L

Relation between Δ & M

R  
L

by moment area method or
by conjugate beammethod.

   M at B



M.L
4EI

M.L2

6 EI

6EI

(
2L
) 3



M  
L2



 6EI .R
L

R (+ ve) when the rotation of member AB with clockwise.

3.4Fixed and moments:

As given in the chapter of Moment distribution method.



3.5 Derivation of slope deflection equation:-





Required Mab &Mba in term of (1) θA, θB at joint

(2) rotation of member (R)

(3) loads acting on member

a2

First assume:-

Get Mfab & Mfba due to acting loads. These fixed and

moment must be corrected to allow for the end rotations θA,θB and

the member rotation R.

The effect of these rotations will be found separately.

Ma1 
4EI θ
L A

Mb1 
2EI θ
L A

M 
2EI θ

L
B

Mb2 
4EI θ
L B



Ma

1

 4EI
L

2EI

.θ
A



Mb1

Mb2


L

 4EI
L

.θ
A

.θ B



Ma

2

 2EI
L

.θ B



Mb3 Ma 3

  6 EI
. L2



  6 EI .R
L



by Superposition;

Mab = Mfab + Ma1 + Ma2 + Ma3



Mf ab

4EI .θ
L A

 2EI θ
L B

  6EI .R
L



In case of relative displacement between the ends of members,

equal to zero (R = 0)



Mab Mf
ab

 2EI
L

(2θa  θb)



2 EI

Mba Mf ba

2

EI

L

(2θb θ A )



The term ( L

(K) hence:

) represents the relative stiffness of member say



Mab
Mf
ab

 Kab (2θAθb )



Note:

MbaMf ba Kba (2θBθa )



 = R is (+ ve) If the rotation of member with clockwise.
L

And (– ve) If anti clockwise.



M =  6 EI .
L2

M =  6 EI .
L2

(with

(with

 ve R)

 ve R)





D

3-5-1 Example 1

Draw B.M.D. S.F.

Solution:-

1- Relative stiffness:- KAB : KBC
=

1 : 2.66 1 : 2



6 8

2- Fixed and Moment:-

3  62

MFBA 12   9 t.m.

3  62 3  82



MFBA   12   9 , MFBC 
12

  18



MFCB 

3  82

12  18



3- Twounknown θB + θC then two static equations are

required. 1) ∑ MB = 0

2) MC = 0

Hence:

MBA + MBC = 0 ……………… (1)



MBC = 0………………. (2)



But:

MAB = - 9 + θB

MBA = 9 + 1 (2θB)

MBC = -16 + 2 (2θB + θC)

MCB = +16 + 2 (2θC + θB)

From eqns. (1&2)

9 + 2θB + (- 16 + 2 (2θB + θC) = 0

6θB + 2θC = 7 …….(3)

and 4θC + 2θB = - 16

2θC + θB = - 8.................. (4)

from 3 & 4

5 θB = 15

θB = 15 = 3.0
5

θC = - 5.5

1.e. MAB = - 9 + 3.4 = 5.6 t.m

MBA = 9 + 2 3.4 = 15.8 t.m

MBC = - 18 + 2 (2 3.4) + (- 5.5) = - 15.0 t.m

MCB = 16 + 2 (2.3 – 5.7 + 3.4) = 0.0 (0.k)



















1- Unknowns θA , θB , & θC

2- Fixed end Moment



MFAB = MFBC = MFCD =
2 
62

12
= - 6 t.m … etc



3.25θB = - 1

θB = - 1

θA = 1.15

θC = 0.077

3- Condition eqns.

MAB = - 4 t.m, MBA + MBC = 0, & MCB + MCD = 0

4- Slope deflection equations

MAB = - 6 + (2θA + θB) = - 4

2θA + θB = 2.......................... (1)

MBA + MBC = 0

+ 6 + (2θB + θA) –6 + (2θB + θC) = 0

4θB + θA + θC = 0....................... (2)

MCB + MCD = 0

= 6 + 2θC + θB – 6 + 2θC = 0

4 θC + θB = 0........................ (3)

From eqn.3 θC = - θB
4

Substitute in eqn. (2)

Hence: 3.75 θB + θA = 0............................... (2)

0.5θB + θA = 1......................................... (2)



Hence:

MAB = - 6 + 2xl.15 + (- .307)

= - 4 t.m 0.K

MBA = 6 + 2x (- .307) + 1.15 = 6.536 t.m

MCB = 6 + 2x .77 + (- .307) = 5.85 t.m

MDC = 6 + .077 = 6.077 t.m















Solution:-

1- Unknown displacements are θB & θD

2- Equations of equilibrium are:-

MDB = 0............................................................... (1)

MBA + MBD + MBC = 0......................................... (2)

3- Relative Stiffness:-

KAB: KBC: KBD = 35:31. 5:22 ; 51. 56:1. 4:1.0.



4- Fixed and Moments:



MFAB

  9633   6
99

t.m





MFBA
 9 63 6 12

99

 3 72
t.m



MFBD 

MFDB 

12

 3
72

12

 12.25

 12.25

t.m

t.m



From the equations 1 & 2 hence;

MDB = MFDB + (2θD + θB)

= 12.25 + 1 (2θD + θB) = 0

2θD + θB + 12.25 = 0--------- (3)

and MBA = 12 + 1.56 (2θB)

MBD = 12.25 + 1.0 (2θB + θD)

MBC = 0 + 1.4 (2θB + 0)

i.e.

12+1.56 (2θB) – 12.25 + 2θB + θD + 1.4 (2θB) = o

7.92θB + θD – .25 = 0--------------- (4)

0.5θB + θD + 6.125 = 0--------------- (3)

i.e 7.42 θB - 6.375 = o

θB = 0.86

θD = - 6.55

Hence:

MBA = 12 + 1.56 (2× .86) = 14.68 t.m



MBD = - 12.25 + (2 × .86 – 6.55 × 1) = - 17.08

MBC = 1.4 (2 × .86) = 2.41

MDB = 12.25 + (2 × -6.55) = zero



MCB =
1MBC = 1.205
2



MAB = -6 + 1.56 (.86) = - 4.66







Two equilibrium eqns.

MAB + MAA = 0............................................. (1)

MBB + MBA + 4= 0............................................ (2)

Slope deflection eqns.

MAB = o + 1.6 (2θA + θB)



MAA =
 10

16

8

 (2θ
A

 θA )



MAA = - 20 + θA

MBA = o + 1.6 (2θB + θA)

MBB = - 42.67 + (2θB + θB)

= - 42.67 + θB

Hence:

3.2θA + 1.6θB + θA – 20 = o

4.2θA + 1.6θB = 20.............................. (1)

- 42.67 + 4.2 θB + 1.6θA + 4 = 0

1.6θA + 4.2θB = 38.67......................... (2)

1.6θA + 0.61θB = 7.62........................... (1)

3.59θB = 31.05

θB = 8.65

θA = 1.46

MAB = -18.52



MBA = 30

MBB = - 34



Example 5

Draw B.M.D for the shown frame

Solution:-

- Two condition equations.

MAA + MAB = 0...................................... (1)

MBA + MBB + 8 = 0....................................... (2)



- Relative stiffness 1 :
16

1 = 1:1.6
10



- Slope deflection equations:

MAA = (2θA – θA) = θA

MAB = (2θA – θB) × 1.6

MBA = (2θB – θA) × θA



MBB = 42.67 + (2θB - θB)





Hence:

θA + 3.2θA + 1.6VB = 0

4.2θA + 1.6θB = 0 .… (1)



3.2θB
+ 1.6θA + θB – 42.67 + 8 = 0



4.2θB + 1.6θA = 34.67… (2)



By Solving 1 & 2 θA = - 3.68 , θB = 9.66

Hence MAA = - 3.68 , MAB = 3.68 t.m

MBA = 25 MBB = 33



Example 6:



- Draw B.M.D for the given structure.

Solution:- once statically indeterminate.

1- Fixed end moments



MFAB = -

MFBA = -

MFBC = -

8  20

8

8  20

8

4  10

8

  20 t.m

  20 t.m

  5 t.m



MFCB = - 10  8  10 t.m 8

MFDB = 10 t.m

2- From Static:- ∑ MB = o



MBA + MBC + MBD = 0

MBA = MFBA + (2θB)

MBA = 20 + 2θB ……………….. (1)

MBC = - 5 + 2θB ……………….. (2)

MBD = - 10 + 2θB ………………. (3)

Hence: 5 + 6θB = o

θB = - o.833

Hence:

MBA = 18.34 t.m , MBC = -6.67, MBD = -11.67 t.m

MAB = - 20 = - 20.833 t.m

MCB = 5 + θB = - 4.167 t.m

MDB = 10 + θB = 9.167 t.m

Example 7:



Draw B.M.D for the shown frame

Solution:

“ 3 time statically ind.” θA , θB , & θC

1- Fixed end moments:

MFAB = - 10

MFBA = + 10

MFBC = - 25

MFCD = MFDC = zero

2- Relative Stiffness 1:1:1

MAB = 0................................................ (1)

MBA + MBC = 0................................................ (2)

MCB + MCD = 0................................................ (3)





Equs.

MAB = - 10 + (2θA + θB)

MBA = 10 + (2θB + θA)

MBC = - 25 + 2θB + θC

MCB = 25 + 2θC + θB

MCD = 2θC

MDC = θC



MAB = - 10 + 5 = zero (o.k)

MBA = 10 + 10 + 2.5 = 22.5 t.m

MBC = - 25 +10 – 7.5 = - 22.5 t.m

MCB = 25 – 15 + 5 = 15 t.m

From 1,2 & 3

2θA + θB = 10.......................................... (1)

4θB + θA + θC = 15.......................................... (2)

4θC + θB = - 25........................................ (3)

By solving the three eqns. hence;

θA = 2.5 θB = 5 θC = - 7.5

Substitute in eqns of moments hence;



MCD = - 15 t.m

MDC = - 7.5 t.m







3-6 Frames with Translation

Examples to frames with a single degree of freedom in

translation.



Example 8:

Draw B.M.D for the shown frame.

1- Unknowns: θB , θC , 

2- Relative stiffness

KAB : KBA : KCD

1 : 2 : 1.5
4 8 6

1: 1 : 1

3- Fixed end moments

MFAB = o MBA = o

MFBC = MCB = zero

MFCD = - 6 t.m

MFDC = + 6 t.m







4- From Statics the equilibrium eqns



MBA + MBC = 0..................................... (1)

MCB + MCD = 0...................................... (2)

5- Shear equation (In direction of X, = o)

6 + XA + XD – 8 = o



6 + MBAM AB

4

 M CDMDC
6

 4 
0

(3)



hence
X MBA MAB and xD 

A 4

MCD MDC  4
6



6- Slope deflection eqns:



MBA – 0 + 1 (2θB – 3
 ), MAB = 0 + 1 (θB – 3.  )
4 4



MBC = 0 + 1 (2θB + θC)

Hence: 4θB – 0.75 + θC = 0 (1)

MCB = 0 + 1 (2θC + θB)



MCD = - 6 + 1 (2θC – 3  ) ,
6



Hence:

MDC = + 6 + 1 (θC-3  )
4



4 θC + θB -
1  = 6 (2)
2



2+ (2B .75 )  (1B .75 )  ( 6  2C ) (6
1C

 =0



4

2 + 0.75 θB - .375  +

6

1 θC – 0.1667 = o
2



θB + .67 θC - 072 = - 2.66 (3)

Subtract (3) from (2)

3.33 θ 1 + 0.288  = 8.33
2

θC – 0.067  = 2.6 (4)

Subtract (1) from (2) × (4)

15 θC – 1.25  = 24

θC – 0.08  = 1.6 (5)

From (4) & (5) 0.147 = 1

 = 6.80

θC = 2.149

θB = 0.799



MBA = - 3.5 t.m ,MAB = - 4.301 t,m, MBC = 3.79

MCB = 5.1 t.m ,MCD = - 5.1 t.m , MDC = 4.744

Example 9:-

Write the shear & condition eqns for the following frame.

Solution:-

Three unknowns: θB , θC, 

Condition equations:

MBA + MBC = o (1)

MCB + MCD = o (2)

Shear eqn.

XA +XB + P1 + P2 = o

(  P1 M ABMBA ) + ( M CD M DC ) P1 + P2) = o (3)
2 h1 h2

Example 10:

Find the B.M.D for the shown structure.



Solution:-

θD = θE = o

θC = - θC

θB = - θB



1- Unknown displacements are: θB , θC , 

2- Relative Stiffness:

AB : BE : BC : CD : ED

1 : 2 : 1 : 1 : 1
5 3 5 3 3

3 : 10: 3 : 5: 5

3- Fixed end moment:-



MFBE = -
436

12

 12 t.m



MFEB = + 12 t.m



MFCD =
1.536

12   4.5 t.m



MFDC = + 4.5

4- Equilibrium equations:-

1- MCD + MCB = o

2- MBC + MBA + MBE = o

3- Shear condition:(33–16.5)+ M CDMDC

6
 MDEMED

6



MCD = - 4.5 + 5 (2θC + θD – 3R)

MCB = 0 3 (2θC + θB)

MBC = 0 + 3 (2θB + θC)

MBA = 0 + 3 (2θB)

MBE = - 12 + 10 (2θB – 3R)

Hence

- 4.5 + 10 θC – 15 R + 6 θC + 3 θB = 0

16θC + 3θB – 15R – 4.5 = 0 (1)



And

and

16θB + 3θC + 6θB – 12 + θB - 3θR = 0

3θC + 32θB – 30R – 12 = 0 (2)



16.5(
15θC

 30R  30
6

θB 60R ) 
0 6



2.5 θC + 5θC + 17R + 16.5 = 0 (3)

by solving equation 1,2 & 3 get

MAB = + 6.66 t.m

MBA = + 13.32 t.m

MBC = + 19.0 t.m

MCB = + 18 t.m MBE

= - 32.32 t.m MEB = -

30.53 t.m MCD = -

18 t.m MDC = -

18.43 t.m





3-7 Frame with multiple degree of freedom in translation.

Example 11:

Write the shown equations and condition eqns for the given

frame.

Solution

Unknowns: θB , θC , θD , θE , ∆1 , ∆1



Shear eqns :

Equilibrium of the two stories.

At sec (1) – (1) :-

(Level CD)

P2 + Xc + XE = 0

Condition eqns

MBE+ MBA+ MBC = 0 (1)

MCB+ MCD = 0 (2)

MDC+ MDE = 0 (3)

MEB+ MEF+ MED = 0 (4)



P2 +
M
CB

 MBC  MDE  MED= 0



h2 h2

At sec. (2) – (2):-

(Level BE) or ∑ x = 0

P1 + P2 + xA + xF = 0



P1 + P2 +
MBAM AB  MEF  MFE= 0



h1 h1



Example 12:-

Draw B.M.D for the given structure.



olution:-

S



1- Relative Stiffness:-



2- Equilibrium equations:-

MAB + MAC = 0 (1)

MBA + MBD = 0 (2)

MCA + MCD + MCE = 0 (3)

MDB + MDF + MDC = 0 (4)





Σx = 0 at Level A-B



2 + (6-3) +
M ACM

CA

6

 MBDMDB
6

= 0 (5)



Σx = 0 at Level CD



11 +
M CEMEC

6

 MDFMFD
6

= 0 (6)



MAB = - 8 + 1 (2θA + θB) MAC

= 3 + (2θA + θC – 3R1)

MAC = - 3 + (2θC + θA – 3R1)

MCA = 16 + (2θB + θA)



MBD = 0 + (2θB + θD – 3R1)

MDB = 0 + (2θD + θB - 3R1)

MDF = 0 + (2θD + 0 - 3R2)

MFD = 0 + (θD - 3R2)

MCD = - 48 + 2 (2θC + θC)

MCD = + 48 + 2 (2θD + θC)

MCE = - 8 + (2θC - 3R2)

MEC = + (θC - 3R2)

3- Fixed end moment:-



MFAB =
 9 48  4   8 t.m

12 12





MF =  982  4   t.m



BA 12 2 16



MFAC =

162

12

  3 t.m



MF = 162   t.m



CA

MFCD =

12

412
2

12

3

  48 t.m



MAB = - 3.84 t.m

MBA = + 18.39 t.m

MAC = 3.84 t.m

MCA = + 7.29 t.m

MBD = - 18.39 t.m

MDB = - 22.97 t.m

MCD = - 11.15 t.m

MDC = - 53.44 t.m

MCE = 3.87 t.m

MEC = - 13.44 t.m

MDF = - 30.47 t.m

MFD = - 26.15 t.m

MFDC = + 48 t.m

4- Unknown displacement:

θA , θB , θC , θD , ∆1 , ∆2

by Solving the six equations one can get;







Example (13):-



Write the shear equations & equilibrium equations for the shown

frame.

Solution:

Shear eqns:

XCE + XBA + P1 = 0.................................... (1)



M EC
 MCE

h1

 M AB M BA
h1 h2

+ P1 = o



xD + xG + xE + P2 = 0 --- (2)



Or:

MDEMED

h2

MGF MFG

h2

 MECM CE

h1 + P2 = 0



XA + XD + XG + P1 + P2 = 0



M AB

h1 h2

 M DE M ED

h2
 MGF  M FG+ P1 + P2 = 0

h2





Example 14:-

a- Write the equations of equilibrium including the shear

equations for the frame.

b- Write the slope deflection equations in matrix for

members CE & GH.

c- By using the slope - deflection method; sketch elastic

curve.

d- Sketch your expected B.M.D

Solution:-



∆2 , ∆3 ,

Relative stiffness: 1 : 1

∆4

a- equilibrium equations

MKL + MKG = 0 (1)

MLK + MLH = 0 (2)

MGK + MGH + MGE = 0 (3)

MHG + MHL + MHF = 0 (4)

MEG + MEC + MFF = 0 (5)

MFE + MFD + MFH = 0 (6)

MCE + MCD + MCA = 0 (7)

MDC + MDB + MDF = 0 (8)

(Unknowns = θC , θD , θE , θF , θG , θA+θK , θL , ∆1 ,

Shear equations:-

a- at Level GH

5 + 10 + (XG – 5) + XH = 0 (9)



Where:

XG =
MGK  M KG

5



XH =
M HLM LH

5



b- at Level EF

5 + 10 + 20 + (XE – 5) + XF = 0

30 + XE + XF = 0 (10)

Where:



XE =
MEGMGE

5



XF =
M FHMHF

5









c- at Level CD

5 + 10 + 10 + 30 + (XC – 5) + XD = 0

50 + XC + XD = 0 ………(11)

Where:



XC =

XD =

M CE

MDF

 MEC

5

 MFD

5



d- at Sec AB:-

5 + 10 + 10 + 10 + 40 + (XA – 5) + XB = 0



70 + XA + XB = 0 …..(12)



XA =
M AC  M CA

5



XB =
M
CE

 M EC

5



3-8 Slope deflection eqns in matrix form:

1- Member CE



MCD = MFCE +

MEC = MFEC +

Where:

2EI (2θC + θE –3
5

2EI (2θE + θC –3
5

2  1 )
5

2  1 )
5



MFCE = -
252

12 = - 4.16 t.m



MCE - 4.16 2 1 – 3 θC

=  2EI
5 θE

MEC 4.16 1 2 – 3 R2

MFEC = + 4.16 t.m

In Matrix form:

Where:



R2 =
2 1

5



MGH - 16.67 2 1 θG

=
 26I

5

MHG + 16.67 1 2 θH

2- member GH

d- B.M.D

Example 15:-

By using slope deflection method;

1- Draw B.M.D for the shown frame.

2- Sketch elastic curve.

Solution:

1- Relative stiffness 1: 1

2- unknowns: θB = - θB (From symmetry)

3- Equilibrium eqns

MBA + MBC + MBD + MBB = o (1)



4-Fixed end moments



MFAB
=

4 62

12 = - 12 t.m



MFBA = = + 12

MFBC = MFCB = MFBD = MFDE = o



MFBB = -
212

2

12

 812
8

= - 36 t.m



4- Slope deflection eqns

MAB = - 12 +(θB)

MBA = 12 + 2θB



MBC = 2θB

MBD = 2θB

MBB = - 36 + θB

MCB = θB

MDB = θB



From eqn (1)

(12 + 2θB) + (2θB) + (2θB) + (- 36 + θB) = 0

7θB - 24 = 0

θB = 3.4286



hence

MAB = - 8.57 t.m

MBA = 18.86 t.m

MBC = 6.86 t.m

MBB = - 32.58 t.m

MCB = 3.428 t.m



MDB = 3.428 t.m

MBD = 6.86



41.11

1.71

41.71

1.7 1



18.86

6.86



The Free Body Diagram to find the S. F.& N. F.
SHEET (3)

1) Draw S.F.D. and B.M.D. for the statically indeterminate

beams shown in figs. From 1 to 10.

































2) Draw N.F.D., S.F.D. for the statically indeterminate

frames shown in figs. 11 to 17. Using matrix approach 1.














